STL EXAMPLES

map, list,pair,and iterator

Delroy A. Brinkerhoff


Presenter
Presentation Notes
The ANSI C++ standard requires compliant C++ compilers to include the Standard Template Library (STL). The STL implements many well-known dynamic data structures and associated support classes and functions. The STL is too extensive to explore every class. However, examining two containers – map and list – and two support classes – pair and iterator – are sufficient to demonstrate the library’s features and prepare students to use its documentation.



STL CONTAINER SUPPORT

ITERATORS THE pair STRUCTURE
Sequential container access Included with containers
Can access the container’s private features, #include <utility> for standalone

tightly binding the iterator and container

template <class T1, class T2>
struct pair

Container functions return pointers {

Overload ++ and - - (forward & backward)

Tl first;

Often used with the arrow operator (->) T2 second:
J

}s


Presenter
Presentation Notes
The following examples use two STL support features: iterators and the pair structure. Iterators are objects that allow programs to sequentially access the data stored in a container object regardless of how the container organizes it. C++ implements iterators as classes nested inside a container, allowing them to access the container’s private features and binding each iterator to a specific container. Iterators can start at the beginning of the data or the end and move in either direction using the overloaded auto-increment and decrement operators. Various container functions create and return iterators as pointers, so programs often use them with the arrow operator.
The ”pair” structure has two members specified with template types. Associating two values makes pair objects useful for mapping operations. However, the generic quality of templates makes it impossible to provide more meaningful variable names. The container header files include the pair structure’s declaration, as does the “utility” header when programs use it independently of the STL containers.



WordCount WITH
STL CONTAINERS

#include <list>
#include <map>

struct w_count

{
string word;
int count;

}s

int main()

{

ifstream file("alice.txt");
int C;
string word;

while ((c = file.get()) != EOF)
{
if (isalpha(c))
word += tolower(c);
else if (word.length() > 0)

{

word.clear();


Presenter
Presentation Notes
The examples demonstrate various STL containers by implementing different versions of the word count program. The examples follow the same basic pattern illustrated by the partial “main” function. The program reads the file one character at a time, adding the alphabetic characters to a “word” variable while treating non-alphabetic characters as word separators. Each example extends the pattern in four locations:
It includes an appropriate container header file. The examples demonstrate the “list” and “map” containers.
It creates a container object, specifying the types replacing the template variables. Some examples utilize the “pair” structure, while one uses a client program structure.
The program adds the word to the container.
Finally, the program prints each word and its associated count.
Students can find the complete programming examples in the textbook.



#include <list>

WordCount:
list<w_count> words; list & STRUCT

list<w _count>::iterator i = words.begin();
while (i != words.end() && word > i->word)
i++;
if (word == i->word)
i->count++;
else

{

w_count node;
node.word = word;
node.count = 1;
words.insert(i, node);

}

for (list<w count>::iterator i = words.begin(); 1 != words.end(); i++)
cout << left << setw(20) << i->word << right << setw(3) << i->count << endl;


Presenter
Presentation Notes
Although lists are not the ideal data structures for solving the word count problem, the first two examples demonstrate them with word count programs. The first joins words and their counts with instances of the client “w_count” structure, while the second uses the “pair” structure.
Each insertion operation creates two iterators: the first searches the list from beginning to end, while the second marks the end. The string inequality maintains the list alphabetically and interrupts the loop when it reaches or passes the word’s insertion point. If the word is in the list, the program increments its count. If the word is not in the list, the program creates an instance of w_count, adds the word with a count of 1, and inserts it into the list at the location indicated by the iterator.
When the program finishes counting the words, it prints them in alphabetic order with their counts. The for-loop uses two iterators and the overloaded auto-increment operator to walk the list, printing the words and their counts.



WordCount:
list & pair

#include <list>
list<pair<string,int>> words;

list<pair<string,int>>::iterator i = words.begin();

while (i != words.end() && word > i->first)
i++;

if (word == i->first)
i->second++;

else

words.insert(i, make_pair(word,1));

for (list<pair<string,int>>::iterator i = words.begin(); i != words.end(); i++)
cout << left << setw(20) << i->first << right << setw(3) << i->second << endl;


Presenter
Presentation Notes
The second list example is logically identical to the previous one but replaces the client w_count structure with the STL “pair” structure. It’s necessary to nest the container variable replacement syntax whenever specifying the list or its iterators. The STL “make_pair” function allows programmers to collapse the four statements the previous example required into a single statement, combining the creation and insertion operations.



WordCount WITH AN STL map AND pair

#include <map>
map<string, int> words;
words[word]++;

for (map<string,int>::iterator i = words.begin(); i != words.end(); i++)
cout << left << setw(20) << i->first << right << setw(3) << i->second << endl;


Presenter
Presentation Notes
I believe a program based on the STL “map” container is the best solution to the word count problem. The STL implements a map as a binary tree, eliminating the need for programmers to write and validate their own tree. Although it names the primary operations differently than outlined earlier in the chapter, it provides them and many more, including a novel index operator.
The program includes the “map” header file, which also includes the “pair” specification.
It creates the map container, mapping words to their counts. The map transparently stores the values in instances of the “pair” structure.
A single statement combines the search, increment, and insert operations. The overloaded index operator returns a reference that can be used as an l- or r-value. Used as an r-value, it is the search operation, and as an l-value, it is the insert operation. When inserting a word, it inserts a default value of 0 for the count. The index operator has a higher precedence than auto-increment, so the statement increments the count after the word is found or inserted.
Finally, the program prints the words in alphabetical order with their counts. Although the map name doesn’t reflect the presence of the pair structure, the “map” stores each word and its count in a “pair” object, and the program accesses them with the pair’s member names.



	STL Examples
	STL Container support
	WordCount WITH stl containers
	WordCount:�list & struct
	WordCount:�list & pair
	WordCount with an STL map and pair

