AN INTRODUCTION TO
SMART POINTERS

Objects managing pointers

Delroy A. Brinkerhoff

Presenter
Presentation Notes
The textbook introduced pointers in Chapter 4 and has used them throughout the remaining chapters. These fundamental pointers - called raw pointers to distinguish them from the smart pointers described here - are variables storing and manipulating addresses. While they enable operations and provide efficiencies not otherwise possible, they are also challenging to use.

C++ SMART POINTERS

Classes wrapping raw pointers

The raw pointer is private

Access through public functions

Maintain a reference count

part

Three kinds of smart pointers

unique ptr
shared_ptr

weak ptr

pl
2

:

Resource

]

2
p2

W

Presenter
Presentation Notes
Smart pointers are instances of template classes wrapping raw pointers, allowing C++ library programmers to automate heap memory management. They typically make the raw pointer a private variable and control its access through public interface functions. Smart pointers refer or point to a resource dynamically allocated on the heap. Significantly, they maintain a reference count, the number of smart pointers referring to the resource.
The C++ smart pointer library specifies three kinds of pointers:
Unique pointers are exclusively responsible for managing a raw pointer, destroying or deallocating its resource when the program finishes using it.
Shared pointers share or distribute the responsibility for managing a resource with other pointers. They increment the reference count whenever a new pointer refers to the resource and decrement it when the program destroys a pointer or otherwise releases the resource.
Weak pointers are a kind of shared pointer that doesn’t add to the reference count.
p1 and p2 are shared pointers referring to a resource, resulting in a reference count of 2. w is a weak pointer referring to the same resource but not increasing the reference count.

SMART POINTERS
ARE TEMPLATE CLASSES

class part int main()
{ {
private: shared ptr<part> pl =
string name; make shared<part>("Widget*”, 1);
int id; shared ptr<part> p2 = pl;
public: weak ptr<part> w = pl;
part(string n) : name(n) {} cout << pl.use count() << endl;
~part() { cout << "dtor\n"; } return 0;
string get name() }

s

{ return name; }

Presenter
Presentation Notes
A simple program demonstrates the code corresponding to the illustration. It defines a shared pointer variable and creates a shared pointer object. Following the standard template syntax, the type name of the managed data becomes part of the variable and function names. The program creates another shared pointer and a weak pointer with the assignment operation. The “use_count” function returns a reference count of two, one count for each shared pointer.
The program also demonstrates two simplifications made throughout the smart pointer discussion. First, smart pointers often eliminate the need for destructors, but the programs include destructors announcing when they run to demonstrate automatic memory deallocation. Second, it’s easy to demonstrate an object copy with an assignment operation, but programs typically copy objects by passing them as arguments in function calls. Furthermore, the make-functions call the managed object’s constructors, passing the arguments to them.

unique ptr

unique_ptr<part> unique if (unique)
= make_unique<part>("Widget", 10); . cout << unique->get_name() << endl;
else
cout << unique->get_name() << endl; cout << “unique 1s empty\n”;

unigue.reset(new part("Screw", 30));
part* p = unique.release(); G (part(>));

if (unique)
cout << p->get_name() << endl; cout << unique->get name() << endl;
else
cout << "unique is empty\n";

Presenter
Presentation Notes
Aside from having different names, creating a unique pointer follows the same pattern. However, programs can’t copy a unique pointer with an assignment, and while they can pass unique pointers by reference, they can’t pass by value. Unique pointers overload the arrow operator to return the raw pointer. (Note that “get_name” is a member of the “part” class.) The “release” function removes and returns the managed raw pointer, leaving the unique pointer “empty.” If the unique pointer isn’t “empty,” the “reset” function destroys the managed resource, but it always installs the argument object as the new managed resource. The parentheses invoke the overloaded “bool()” operator, returning true if the pointer is empty but otherwise returning false.

shared ptr

shared _ptr<part> shared =

make shared<part>("Bolt", 20);
shared ptr<part> shared2 = shared;
shared _ptr<part> shared3 =

make shared<part>("Bolt", 20);

cout << "(1) " << shared->get name() <«

" " << shared.use count() << endl;
cout << "(2) " << shared2->get name() <<

" " << shared2.use_count() << endl;
cout << "(3) " << shared3->get name() <<

" " << shared3.use_count() << endl;

if (shared.unique())
cout << "Unique\n";
else
cout << "Shared\n";

shared.reset(new part("Screw", 30));

if (shared)

cout << shared->get name() << endl;
else

cout << "shared is empty\n";

Presenter
Presentation Notes
Extending the previous shared pointer example demonstrates additional behaviors and functions. First, programs can create different shared pointers with the same values. Although “shared” and “shared3” refer to a “Bolt” with the ID “20,” they are distinct pointers pointing to distinct objects. As “shared2” is a copy of “shared,” they point to the same object and have a reference count of 2. However, “shared3” refers to and manages a different “part” resource, so it has a reference count of 1.
The ”unique” function returns true if the shared pointer is the only pointer managing the resource. Shared pointers also override the “bool()” operator, invoked by the parentheses, to detect “empty” pointers.

weak ptr (1)

shared_ptr<part> shared = make_ shared<part>("Gadget", 40);
weak ptr<part> weak = shared;

cout << "(1) " << shared->get name() << <<
shared.use count() << endl;

cout << "(2) " << weak.use count() << endl;

shared _ptr<part> locked = weak.lock();

cout << "(4) " << shared.use _count() << " " <K

locked.use _count() << << weak.use count() << endl;

Presenter
Presentation Notes
Programs create weak pointers by copying shared pointers – illustrated with an assignment operation here, but more generally with a function call. Weak pointers do not contribute to the reference count, so both calls to “use_count” return 1. Although weak pointers refer to a resource, they can’t directly access it. Instead, they must create a new shared pointer with the “lock” function to access their resource. The “lock” function temporarily increments the reference count and prevents the program from deallocating the resource.

weak ptr (2)

weak.reset();

if (weak.expired())
cout << "weak unavailable" << endl;
else
cout << weak.use count() << endl;
cout << "(5) " << shared.use _count() << " " <K
locked.use count() << endl;

Presenter
Presentation Notes
The “reset” function destroys the resource, leaving the pointer empty and reducing the reference count of any pointers sharing the resource. The “expired” function returns true when it detects an empty pointer.

	An Introduction to�Smart pointers
	C++ Smart pointers
	smart pointers�are template classes
	unique_ptr
	shared_ptr
	weak_ptr (1)
	weak_ptr (2)

