
INTRODUCTION TO
FILES AND STREAMS

File I/O

Delroy A. Brinkerhoff

Presenter
Presentation Notes
All programs process data. The source of the raw data and the destination of the results vary with each program and the task it performs. This chapter explores files maintained on persistent storage as the source and destination.



MEMORY HIERARCHY

• Registers are part of the CPU

• Accessible with assembly code but not C++

• Main/Primary/RAM is where variables “live”

• Mass/Secondary is the topic of this chapter

Presenter
Presentation Notes
We can coarsely divide computer memory into three categories. The CPU registers are the fastest. Assembly language programs can access them, but C++ programs cannot. Primary memory is not as fast as registers, but C++ programs can access it, storing the variables, objects, pointers, and other data used throughout the textbook. Registers and primary memory are volatile, and data is lost when the computer is shut down. Secondary memory is the slowest but is also persistent, retaining data when the computer is powered off.



FILES

• “A file is a named collection of related information that is recorded on 
secondary storage.

• “A file is the smallest allotment of logical secondary storage; the OS can only 
store data in secondary storage as a file.”

• Silberschatz, Galvin, & Gagne, Operating System Concepts Essentials, John Wiley & 
Sons, Inc., 2011

• Files consist of a sequence of bytes representing a variety of data types.

• Programs determine the meaning of the data.

Presenter
Presentation Notes
Computers organize data saved in secondary memory as files accessed by name, making files the only way computers manage secondary memory. Secondary memory devices manage data as a sequence of bytes, but programs can group them into various data types. Therefore, the meaning of a file’s contents depends on the program using it.



FILE PROPERTIES

• Physically, the contents of a file may be 
scattered across secondary memory

• Logically, the contents of a file may be 
viewed as an array

• Each byte in a file is like one array element

• Each byte is addressable by an offset from 
the beginning of the file

• The OS maintains a position in an open file 
that is updated by read or write operations

0
1
2

n-1

.

.

.

position 
pointer

Presenter
Presentation Notes
Computers often organize secondary memory in addressable “chunks” called blocks, which may physically reside at any location in the storage medium. However, it’s often helpful to view files abstractly as a sequence of bytes that look like the elements of an array. The array indexes correspond to the logical address of each byte within the file. Programs typically read and write files incrementally and must “remember” their current position within the file where the next read or write occurs. The operating system and C++ stream classes maintain the position as the number of bytes from the file’s beginning.Hardware transfers data between the program and secondary memory in block units for efficiency, even if the program only needs to read or write a few bytes. Therefore, the program buffers the data in transit. A buffer is an array of primary memory, saving the data read from secondary memory until it’s all processed or accumulating written data until it can transfer a whole block.



STREAM 
CLASSES

ios

 
 

ifstream

 
 

streambuf

 
 

ostream

 
 

ofstream

 
 

fstream

 
 

iostream

 
 

istream

 
 

#include <iostream>

#include <fstream>

filebuf

 
 

istream cin;

ostream cout;

Presenter
Presentation Notes
The UML diagram illustrates the primary C++ classes responsible for program input and output. The name of the top-level class, ios, is an abbreviation of input-output system. The system derives specialized classes from ios with inheritance and aggregates a buffer to each I/O object. The header file and classes highlighted with blue target the console, while the green ones implement file operations.The console I/O objects, cin and cout, used throughout the text are instances of the istream and ostream classes, respectively. The file streams, ifstream and ofstream, are subclasses of the console streams. Consequently, we can reuse the familiar console operator syntax with secondary memory files.



CONSOLE I/O

int i;

double d;

cin >> i;

cout << d << endl;

ifstream input(“data1.txt”);

ofstream output(“data2.txt”);

input >> i;

output << d << endl;

FILE I/O

USING STREAMS

Presenter
Presentation Notes
The console objects are predefined, automatically attached to the console, and placed in a runtime library. Programs can use them without further effort. Alternatively, programs must create and open the file stream objects. Opening the stream object attaches it to a specific file. Once open, the file streams behave the same as the console objects.


	Introduction to�Files and Streams
	Memory Hierarchy
	Files
	File Properties
	Stream Classes
	Using Streams

