
OPENING AND CLOSING FILES

C++ programs open files to use them

Open files consume system resources and must be closed

Delroy A. Brinkerhoff

Presenter
Presentation Notes
C++ programs access files in secondary memory through stream objects. Opening a file, either with a constructor or an “open” function, binds the file to a stream. An open file consumes or uses some of the operating system’s resources, making it crucial for programs to close the files when finished processing them, which releases the resources. This video describes the opening and closing operations.

C++ PROGRAMS ACCESS FILES WITH
STREAM OBJECTS

input file stream output file stream

fstream
file stream

Presenter
Presentation Notes
Streams move data between a program and a file as a sequence of unstructured bytes, like marbles rolling down a hose or pipe. C++ defines three stream classes whose names suggest how programs use them. The “ifstream” class, short for input file stream, allows programs to read data from a file; the “ofstream” class, short for output file stream, allows them to write data to a file; and the “fstream” class, short for file stream, allows them to both read and write, albeit with some additional requirements.

CONFIGURING STREAMS

• Global processing

• Mapping between \r\n and \n

• How do programmers configure streams?

• How do streams “remember” their configuration?

• Flags are variables used to record a program's state or condition

• A bit vector is a set of bits, with individual bits treated as switches or flags

• A bitmap is a constant pattern of bits denoting possible stream settings

Presenter
Presentation Notes
Streams can perform some simple, global processing as the data flows through them – for example, mapping between a \r\n pair and a \n. How do programmers specify the required processing, and how do streams “remember” the specified configuration?Flags are variables used to record a program’s state or condition. A bit vector is a set of bits, with individual bits treated as switches or flags. Each stream object maintains its configuration as a bit vector, with each bit or flag denoting a specific setting. A bitmap is a constant pattern of bits denoting possible stream settings. Programs manage stream settings with bitwise operators whose operands are the stream’s bit vector and standard C++ bitmasks.

BITMASKS AND FILE CONFIGURATION

Flag Meaning Binary

ios::in Open for input (reading) 00000000000000000000000000000001

ios::out Open for output (writing) 00000000000000000000000000000010

ios::ate Open at end 00000000000000000000000000000100

ios::app Append data to the existing 00000000000000000000000000001000

ios::trunc Truncate (delete) existing data 00000000000000000000000000010000

ios::binary Open in binary mode 00000000000000000000000000100000

Presenter
Presentation Notes
C++ provides six standard bitmasks representing six stream configurations. Each mask consists of a sequence of 0s and one 1-bit. Each pattern or number is implementation-dependent and may be inconsistent between compilers. However, the ANSI standard specifies the symbolic names, making them consistent across all ANSI-compliant compilers. The illustrated values, gleaned from one compiler’s header files, demonstrate the operations, which don’t depend on specific values.Three of the configurations pertain to opening output files containing data. “ate” is short for “at end,” setting the position pointer at the end of the existing data but allowing the program to reposition it as needed. “app” is short for append, appending new data at the end of the existing data and ignoring any repositioning commands. Finally, “trunc” is short for truncate, meaning it truncates or deletes any existing data when the program opens the file.

BITWISE-AND & BITWISE-OR:
MANAGING BIT VECTORS

a b a | b

0 0 0

0 1 1

1 0 1

1 1 1

a b a & b

0 0 0

0 1 0

1 0 0

1 1 1

Presenter
Presentation Notes
Programs manage stream configurations, with two bitwise operators: OR and AND. The truth table for the bitwise-OR operator illustrates that it results in a 0-bit only when both operands are 0. Programs use the OR operator to switch on or insert 1-bits in the operation’s result. 1-bits in the mask produce 1-bits in the result regardless of the corresponding data bit.In contrast, the truth table for the bitwise-AND results in a 1-bit only when both operands are 1. Programs use the AND operator to switch off or mask out bits in the operator’s result. 0-bits in the mask block or filter out the corresponding data bits, so a 0-bit in the mask produces a 0-bit in the result, regardless of the corresponding data bit.

STREAM STATE FLAGS

Flag Function Description

goodbit good() True (1): the file is healthy and ready for I/O

eofbit eof() True (1): the stream has read the end of the file

failbit fail() True (1): stream is at the end of file or encountered a
“soft,” recoverable error

badbit bad() True (1): stream is corrupt and unable to perform I/O

clear() Sets goodbit to 1, zeros (resets) the other flags

Presenter
Presentation Notes
Each stream object maintains a set of four 1-bit state flags. The flags indicate the stream’s current state or condition. Read and write operations change the flags, signaling significant events. For example, when a read operation detects it has reached the end of the file, it sets the goodbit to 0 and both eofbit and failbit to 1. The clear function resets goodbit to 1 and the other flags to 0.

OPENING FILES

• openmode mode = ios::in | ios::out | ios::app | ios::binary;

• = 00000000000000000000000000101011

• ifstream(file_name, openmode mode = ios::in);

• ifstream();

• open(file_name, openmode mode = ios::in);

• ofstream(file_name, openmode mode = ios::out);

• ofstream();

• open(file_name, openmode mode = ios::out);

Presenter
Presentation Notes
The stream header files define an integer type named “openmode,” representing stream settings. The stream constructors and open functions include an openmode parameter with appropriate default values. Programmers can override the defaults by creating expressions using the bitwise-OR operator to combine multiple stream settings. Programs can save the settings in an openmode variable or implement the expression directly as a function argument.

VALIDATING AN OPEN FILE

ifstream file(file_name);

if (! file.good())
{
 // open failed
}

// process the file

ifstream file(file_name);

if (file.good())
{
 // process the file
}
else
{
 // open failed
}

Presenter
Presentation Notes
C++ is closely related to C, which does not have exceptions. Furthermore, exceptions were still considered “experimental” at C++’s initial release. Consequently, C++ programs must explicitly test file streams to validate their open status with one of three validating functions: fail, bad, and good. However, I’ve found good to be the most comprehensive.Programs often use two patterns based on the good function to validate open streams. If a file open fails (it isn’t good), the program can attempt remedial action or report the error and abort the program. Alternatively, the program can use a straightforward branch: processing the file if it opens without error or reporting the error and aborting the program if the open fails.

CLOSING FILES

• ifstream input(file_name);
 // use the file
 // "input" closed by destructor

• while (....)
 {
 ifstream input(file_name);
 // use the file
 // "input" closed by destructor
 }

• ifstream input;
 while (....)
 {
 input.open(file_name);
 // use the file
 input.close();
 }

Presenter
Presentation Notes
Three pseudocode examples illustrate common patterns of opening, using, and closing files:Simple programs open a file with a constructor, use it, and let the destructor close it.Programs that process multiple files often do so in a loop. This example defines the stream object, opens the file, processes it, and allows the destructor to close it, all within the loop.Creating and destroying stream objects has some overhead. This version reduces that overhead by creating the stream outside the loop. The loop body opens the file, binds it to the stream, processes it, and closes it. The destructor destroys the stream when the code goes out of scope.

	Opening and Closing Files
	C++ programs access files with stream objects
	Configuring Streams
	bitmasks and file configuration
	Bitwise-and & bitwise-or:�Managing bit vectors
	stream state flags
	Opening files
	Validating an open file
	Closing Files

