mycopy.cpp

A File Processing Example

Delroy A. Brinkerhoff


Presenter
Presentation Notes
Copying a file is a simple but frequently necessary task. It is so essential that all general-purpose operating systems provide one or more implementations, either in a shell, a system utility, or a feature of a graphical file manager. Its simplicity makes it an ideal example of basic file operations.



OPENING THE FILES

string input;
cout << "Source file:
getline(cin, input);

ifstream in(input, ios::binary);

if (!in.good())

string output;
; cout << "Destination file: ";
getline(cin, output);
ofstream out(output, ios::binary);

if (lout.good())

// if (!lin) // if (!in)
{ {
cerr << "Unable to open " cerr << "Unable to open "
<< input << endl; << output << endl;
exit(1); exit(1);
} }


Presenter
Presentation Notes
Regardless of how we implement the copy operation, most of the program deals with the overhead of opening and validating the files. Fortunately, the overhead is independent of the copy operations, allowing a single description. Also, notice that statements opening and validating the input or source file follow the same pattern as those opening and validating the output or destination file.
The program uses constructors to open both files in binary mode, allowing them to process both binary and text files. The program ensures that both files open successfully. Programmers can choose between the “good” function and the conversion operator. If either file fails to open, the test aborts the program.
The two code blocks run sequentially in all versions of the copy program, with the copy instructions following the second block. If the second file validation fails, the stream destructor closes the file opened in the first block.



CHARACTER I/O

char c; int c;
while (in.get(c)) while ((c = in.get()) != EOF)
out.put(c); out.put(c);


Presenter
Presentation Notes
After seeing the steps necessary to open and validate the source and destination files, the code copying the file seems anticlimactic. Programmers can choose between two overloaded versions of the get function, with corresponding variations in the variable definition and loop control.
In the first version, the get function stores the read character in the variable c, and returns an input stream reference, which the conversion operator converts to a Boolean value, driving the loop. The put function copies the character to the output stream.
In the second version, the get function returns the character, which the assignment operator saves in c. The get function returns EOF when the stream reaches the end of the file, ending the loop. C++ automatically converts the integer value in c to a character for the put function to write.



BLOCK I/O

istream& read(char* buffer, char block[512];
streamsize n); int count;
ostream& write(const char* buffer, in.read(block, 512);
streamsize n); while ((count = in.gcount()) > 9)
{
streamsize gcount()const; out.write(block, count);

in.read(block, 512);
while (in) .. }
if (out) ..


Presenter
Presentation Notes
The block I/O version of the copy program uses three stream functions. The read and write functions’ first parameter is the address of a buffer, typically implemented as an array. The type of the second parameter, streamsize, is a type alias suitable for representing a size value and is the number of bytes to read or write. Both functions return stream references, allowing programs to embed the calls in loops or if-statements. The third function, gcount, short for get count, returns the number of bytes the last read operation extracts from the file.
Programs typically match the block or array size to a program-defined object, such as a structure or class. The copy program doesn’t define or use objects, so it defines an arbitrary but suitable size, typically a multiple of 512, that reflects the hardware’s capacity.
The program attempts to fill the block with the read operation, but queries the system to get the exact read count. The read function saves the data at the address that the “block” variable indicates. It then writes the “count” number of bytes from the block to the output stream. The write function uses the value saved in “count” because the number of bytes in the last read is often less than the requested number. The loop ends when the last read operation doesn’t read any data.



BUFFER |/O

out << in.rdbuf(); Clever but limited application
streambuf* rdbuf() const;

ostream& operator<<
(streambuf* sb );


Presenter
Presentation Notes
The buffer copy version has limited practical application but is brief and clever, demonstrating that sometimes complex operations have simple implementations. The “rdbuf” function returns a pointer to the input stream’s “streambuf” buffer. The overloaded inserter operator extracts the maximum number of bytes from its right-hand operand, sb, and transfers them to the output stream, looping automatically until it transfers all data.



	mycopy.cpp
	Opening the files
	Character I/O
	Block I/O
	buffer I/O

