
CHARACTER I/O

Reading and writing files one character at a time

Delroy A. Brinkerhoff

Presenter
Presentation Notes
Sometimes, programs need to process a file’s contents one character at a time. For example, C++ compilers read individual characters from source code files, building meaning until they can generate machine code. This video details some crucial character I/O concepts, reviewing and extending those introduced in the mycopy demonstration.

STREAMS AND FUNCTIONS

• ifstream in("input.txt");

• ofstream out("output.txt);

• in.open("input.txt");

• out.open("output.txt");

• Text and binary

• ostream& put(char c);

• int get();

• istream& get(char& c);

• operator bool()

Presenter
Presentation Notes
C++ programs can open files with constructors or the open function in either text or binary mode. Programmers can specify the file name as an absolute or relative pathname. The examples use the illustrated stream names throughout the video. The video focuses on three functions: “put,” and two overloaded “get” versions.The “get” functions’ return types are significant. The first returns a character as a non-negative integer, while the second passes the character back through the reference parameter and returns an input stream. An overloaded stream conversion operator converts the returned input stream to a Boolean value. The following examples demonstrate the effect of the return types.

ONE-READ PATTERNS

int c;
while ((c = in.get()) != EOF)
{
 // process c
 out.put(c);
}

char c;
while (input.get(c))
{
 // process c
 out.put(c);
}

• The char type is an integer, and programs can
represent characters with integers of various lengths

• Streams maintain their status with state flags
• Functions set the state flags on failed I/O operations

Presenter
Presentation Notes
We begin by reviewing three concepts. First, the character type is an integer, and programs can represent character data with integers of various lengths. Furthermore, C++ can automatically convert between a single-byte character and longer integers. Second, streams maintain their current status with state flags indicating errors or an end-of-file condition. Finally, the “get” functions only sets the state flags on a failed read operation.These examples combine and sequence the read and test operations, incorporating them into the loop. Consequently, each pattern only requires one read operation. To understand the behavior of the loops, imagine that the program is about to read the last character. Both “get” functions succeed, returning the character and leaving the flags unset. The loops process the character and begin their next iteration with another read. The read, performed with a “get” function call, fails, setting the error flags. In the first example, “get” returns EOF, ending the loop. In a few moments, we’ll discuss how binary data affects this version of “get” and the EOF constant. The second example returns an input stream, which the conversion operator automatically converts to a Boolean “false,” ending the loop.The examples represent the processed data as the variable “c” for convenience. The data may be unchanged from the input, modified, or replaced with a different value. The specific processing the program performs depends on the problem that it solves.

TWO-READ PATTERNS

int c = in.get();
while (! in.eof())
{
 // process the data
 out.put(c);
 c = in.get();
}

int c = in.get();
while (in)
{
 // process the data
 out.put(c);
 c = in.get();
}

Presenter
Presentation Notes
These examples separate the read and test operations. Consequently, they require two read operations to ensure that the test, based on the stream’s state flags, always immediately follows a read in execution order. The first example uses the “eof” function but could compare “c” to the EOF constant, as illustrated previously. The second example automatically calls the conversion operator to convert the stream to a Boolean value, driving the loop.

COMPUTER DATA STORAGE

• Integers vary in length

• char is 8 bits or one byte

• short is typically 16 bits

• int and long typically 32 or 64 bits

• put(char)

• Writes the least significant byte (LSB)

• Discards higher-order bits

MSB = Most Significant Byte / Bit
LSB = Least Significant Byte / Bit

Presenter
Presentation Notes
C++ supports integers of various lengths. For example, characters consist of one byte or eight bits. The length of other integers depends on the compiler and the computer’s hardware, but 32 and 64 bits are typical, matching the computer’s word size. When the “put” function writes an integer longer than one byte, it only writes the bits in the least significant byte or LSB, discarding the most significant and following bytes. However, reading characters or bytes from a file with the “get” function is more complicated.We interpret a decimal or base-10 number as a sum of terms. Each term is a product of one digit and a power of ten, where the power corresponds to the digit’s position in the number. For example, three hundred forty five equals three times ten squared, plus four times ten, plus five.Similarly, a binary or base-2 number is a sum of terms. Each term is a product of a binary digit or bit and a power of two, where the power corresponds to the bit’s position in the number. The most significant bit, also abbreviated MSB, corresponds to the position with the highest power of two. How they interpret this bit is the key to understanding the “get” functions’ behavior.

CHARACTER DATA INPUT

• put(char)

• get(char): retains sign

• (int) char

• Sign extension copies the MSB to fill the
higher-order bits

• int get()

• Unsigned

• The MSB is part of the magnitude
M/LSB = Most / Least Significant Bit

Presenter
Presentation Notes
Modern computers use the most significant bit as the sign bit (shown in red) to indicate a number’s sign, with “1” indicating a negative value. This interpretation doesn’t affect the “put” function: it writes all eight bits to a file. The “get” functions also read eight bits but differ in how they interpret the most significant or sign bit.When the parameterized “get” function reads a character or byte from a file, it retains its sign – it interprets the most significant bit as the sign bit. So, if the program reads a negative value from a binary file, “get” interprets it as a negative value. If the program converts the character to a longer integer, it “sign extends” the MSB to fill the additional bit positions. “Sign extend” copies the most significant or sign bit, filling positive values with 0s and negative values with 1s.The parameterless “get” function also reads eight bits from a file but returns them as an unsigned integer. It interprets the MSB as part of the number’s magnitude rather than interpreting it as the sign bit, so it pads the additional bits with 0s.

THE get FUNCTIONS

Decimal Binary get(char) int get()

-128 1000 0000 -128 128

-127 1000 0001 -127 129

-1 1111 1111 -1 255

0 0000 0000 0 0

1 0000 0001 1 1

127 0111 1111 127 127

while((c = in.get()) != EOF)
(c > 127) ? (c – 256) : c

Presenter
Presentation Notes
The table illustrates the “put” and “get” functions using a few critical values. The first two columns represent the data a program might create, shown in both decimal and binary formats. Imagine that the program writes this data to a file with the “put” function. The first “get” function reads the data, preserving its sign. The second “get” function reads the data, returning it as an unsigned value, with the MSB contributing to the number’s magnitude rather than encoding its sign.C++ implements the symbolic constant, EOF, as a negative value, typically -1. Programs can use the “get” function’s return value to drive loops reading binary files by comparing it to EOF because the only time the returned value is less than 0 is when it reaches the end of the file. Programs can calculate the original value by subtracting 256 from returned values greater than 127.

	Character I/O
	Streams and Functions
	One-read patterns
	two-read patterns
	Computer Data Storage
	character data input
	The get functions

