
BLOCK I/O

Reading and writing aggregate data

Delroy A. Brinkerhoff

Presenter
Presentation Notes
Abstractly, aggregate data consists of small parts treated as a whole unit or “chunk.” The parts may be the individual bytes forming a fundamental type like an integer or double, or they may be an object’s fields. The read and write functions treat aggregate data as a monolithic block, transferring it between primary and secondary memory with a single statement.

BLOCK read AND write FUNCTIONS

• ifstream in(in_name, ios::binary);

• ofstream out(out_name, ios::binary);

• ostream& write(char* buffer, streamsize nbytes);

• istream& read(char* buffer, streamsize nbytes);

• buffer is a memory address

• nbytes is the number of bytes to transfer

Presenter
Presentation Notes
Programs usually open participating files in binary mode when performing block I/O operations. Although the read and write functions move data in opposite directions, their arguments are the same. The first is the address of a buffer – a block of memory holding data. Programs typically create a buffer as an array on the stack or heap. The second argument is the number of bytes the function attempts to transfer between memory and secondary storage. The small squares in the illustration may be the bytes forming fundamental data, the elements of an array, or the fields in an object. If they are larger than individual bytes, the number of bytes to transfer is the product of the number of squares and the size of a single square.

BASIC BLOCK I/O PATTERNS

• T data;

• out.write((char *) &data, sizeof(T));

• in.read((char *) &data, sizeof(T));

• while (in.read((char *) &data, sizeof(T)))
 ...

Presenter
Presentation Notes
Programs generally follow a few basic patterns when they perform block I/O. Those patterns are independent of the data type, so for brevity, the video uses the letter “T” to stand for any valid type, including structures and classes.
Programs can read and write single data items with the read and write functions. They can call the functions as sequential statements or within loops. The write function call is often the last statement in a large, multi-statement data acquisition loop. In contrast, programs can nest a read function call inside a while loop that alternately reads and processes data.

ARRAY I/O PATTERNS

• T data[100];

• for (int i = 0; i < 100; i++)
 out.write((char *) &data[i], sizeof(T));

• int i = 0;
 while (i < 100 && in.read((char *) &data[i], sizeof(T)))
 i++; // and additional processing

Presenter
Presentation Notes
The I/O functions can access the individual elements of an array with the index operator. They often “know” or can count how many elements are in an array, making it easy to write them with a for loop. The loop can begin with any element and output fewer elements than the array holds.
The amount of data in a file can vary over time, making it difficult or impossible to know how many data items it holds. Therefore, programs often use indeterminate or while loops to read files. The program increments the index variable to sequentially step through the array and count the number of elements read. If the program is storing the data in an array, it must ensure that a buffer overflow doesn’t occur. Notice that the increment operation occurs outside the loop control. Incrementing inside the read function call results in an extra count because it happens during the read that detects the end of the file.

EN BLOCK I/O

• T data[100];

• out.write((char *) data, n * sizeof(T));

• in.read((char *) data, n * sizeof(T));

• 0 < n ≤ 100

Presenter
Presentation Notes
En bloc reading and writing are quintessentially fundamental I/O operations. They transfer a stated number of bytes beginning at a specified address. Programmers often create the address as an array, and en bloc operations can transfer its entire contents with a single statement. The transfer can begin at the zeroth element or use address arithmetic to begin at an interior element. Programs calculate the number of bytes to transfer as the product of an element’s size and the number of elements to transfer, which can be fewer than the array’s size.
It’s unusual for a program to “know” how many array elements a file holds, making en bloc reads uncommon, but programs can easily perform en bloc writes. Nevertheless, programmers typically use both to iteratively empty or fill data buffers as illustrated in the previous mycopy example.

	Block I/O
	Block read and write functions
	Basic Block I/O patterns
	Array I/O patterns
	En Block I/O

