RANDOM AND DIRECT ACCESS

Two Terms, One Concept

Delroy A. Brinkerhoff


Presenter
Presentation Notes
Random and direct access are synonyms describing how programs access data in a file, typically saved in secondary memory, such as a disk or flash drive. The data can be as small as a single byte – smaller units are not addressable – but are often larger “chunks.” Like the fields in an object, the chunks or blocks typically consist of related data. The term “record” refers to a chunk or block of data in a database.



RANDOM/DIRECT ACCESS

SEQUENTIAL ACCESS RANDOM/DIRECT ACCESS

L .

r_\rlflﬂﬂﬂ
|


Presenter
Presentation Notes
Programs begin accessing a file sequentially with the first block or record, and continue accessing the data one record after another. They can skip data only in the sense that they ignore it after accessing it, and they cannot backup without returning to the beginning.
Random and direct access suggest that programs can go directly to any position in a file in any (seemingly random) order. Moving directly to any position in a file allows programs to skip or revisit data.



fstream OBJECTS HAVE TWO
POSITION POINTERS

istream& seekg(streampos pos);

0 ostream& seekp(streampos pos);

istream& seekg(streampos off, seekdir loc);

2 L ostream& seekp(streampos off, seekdir loc);
position
ios: :beg
output . ios::cur
position ios::end

streampos tellg();

n-1

streampos tellp();


Presenter
Presentation Notes
Instances of the fstream class have two file position pointers, one for reading data and one for writing it. The positioning functions distinguish by name which pointer they affect: “g” refers to the “get” or read or input pointer, while “p” denotes the “put” or write or output pointer.
The functions with a single parameter move their corresponding file pointers to an absolute position or byte address within the file. The two-parameter functions move the pointers to a relative position specified as an offset from one of three locations in a file. Three symbolic constants denote the three locations: the file’s beginning or end, and the current pointer location in the file.
Two functions report the pointers’ absolute position or address in the file.



THE RELATIONSHIP BETWEEN
ADDRESSES AND RECORD NUMBERS

Address (physical) <> Record number (problem)
address = record number X size of a record

record number = address / size of a record

struct chunk { . . . };
streampos offset = record * sizeof(chunk);

streampos record = offset / sizeof(chunk);

0 0-9 0
10 10-19 1
20 20-29 2
30 30-39 3
40 40-49 4
50 50-59 5
b0 b0-69 b
70 70-79 7

Address Record &


Presenter
Presentation Notes
The seek and tell functions only operate on physical or byte addresses. However, it’s often convenient for programmers to use concepts more closely tied to a problem and its solution. For example, if they are implementing a database solution, grouping data into uniquely numbered records might better match the problem and solution. Fortunately, converting between byte addresses and record numbers is relatively simple.
A record’s address is the product of its record number and size, and its record number is the quotient of its address and size calculated with integer or truncating division. If we define the data as a structure or class, we can program the conversions using the sizeof operator as illustrated. Assuming a record size of ten bytes for convenience, the picture illustrates the relationship between the address and record number.



FILE POSITIONING OPERATIONS

.seekg(9);

.seekp(09);

.seekg(@, ios::end);
.seekp(@, ios::end);
.seekg(R * sizeof(chunk));
.seekp(R * sizeof(chunk));

Move read pointer to file’s start
Move write pointer to file’s start
Move read pointer file’s end
Move write pointer file’s end
Move read pointer to record R

Move write pointer to record R



Presenter
Presentation Notes
The seek functions, in conjunction with simple arithmetic operations, allow programmers to access files in many ways. Assuming that “s” is an fstream object, the table illustrates three key operations: moving to the file’s beginning, moving to its end, and moving to a specified record number. The updated Rolodex example in the following section illustrates these and other direct access operations.



UPDATING A RECORD:
THE FUNDAMENTAL DATABASE OPERATION

s.seekg(R * sizeof(chunk));

Record s.read((char*)c, sizeof(chunk));

update c
s.seekp(R * sizeof(chunk));

s.write((char*)c, sizeof(chunk));



Presenter
Presentation Notes
Combining the seek and tell functions with block I/O completes the direct access operations. The fundamental database operation, the ability to update a record in place, demonstrates the combination. The statements assume that “s” is an fstream object, “chunk” names a structure or class, “R” is a valid record number, and “c” is a chunk variable. The program:
Moves the get or read pointer to record R.
Reads record R from the file into the object c.
Updates the data saved in c.
Moves the put or write pointer to record R.
Writes object c to the file, overwriting the previous data without affecting the data on either side.
A complete database management system, or DBMS, requires other operations as well, but this fundamental operation is key to modern database implementation.



	Random and Direct Access
	Random/Direct access
	fstream objects have two�position pointers
	The relationship between�addresses and record numbers
	File Positioning Operations
	Updating a record:�The fundamental database operation

