ISAM / KSAM

Indexed Sequential Access Method

Keyed Sequential Access Method

Delroy A. Brinkerhoff

Presenter
Presentation Notes
ISAM and KSAM are synonyms describing a method for accessing large, sequentially created data files. The method requires a supplemental file of keys that index the data file, suggesting the method’s names.
ISAM is language-independent, meaning that programmers can implement it in various languages. Furthermore, C++ doesn’t provide functions specifically for implementing it. Instead, programmers synthesize an ISAM system with the direct access and file positioning functions presented in the previous sections.

ISAM ARCHITECTURE

0
Alice 5 1| Dilbert 115 Elm 801-555-1234
2
Dilbert | 1 3
4| Wally 207 Church 5t. 801-555-9876
5 Alice 216 Sunset Ave. | B801-555-4567
Wally | 4 6
7

Index File Data File

Presenter
Presentation Notes
An ISAM system requires at least two files: The data file stores the information the system manages, while the index file assists in locating specific items or records in the data file. It’s convenient to visualize the files as tables divided into rows and columns. Each row represents a set of related data called a record, and the columns name the individual data items or fields. We can number the rows like an array and use the index values as “record numbers.” For example, “Alice” has record number 5. The illustration demonstrates the relationships between the records in the files.

DATA FILE

0
1 | Dilbert 115 Elm 801-555-1234
2
3
41 Wally 207 Church 5t. 801-555-9876
5 Alice 216 Sunset Ave. | 801-555-4567
B
7

Data File

Fixed-length records

Consists of many fields

Too large to fit into memory
Each record is relatively large
There are many records
Impractical to reorganize

New records are appended at the end of the file

Presenter
Presentation Notes
The data file grows “organically” in whatever order information arrives in the system, resulting in a chaotic and unordered structure. All the records have the same, unvarying length, typically consisting of numerous fields. In an authentic situation, the records are so numerous and large that the program can’t fit the data file into memory. The file’s size makes it difficult to search and impractical to reorder. Consequently, the system can only append new records sequentially at the end of the file, leaving it in its chaotic state.

INDEX FILE

Records have two fields Alice

A key duplicating one data file field

Dilbert
A record number or absolute address of a data file record
Support a fast-search algorithm
An ISAM system requires one index file for each searchable Wally

data record field

Index File

Presenter
Presentation Notes
Each record or key in the index file consists of two fields. The first is a copy of one data record field, and the second is the address of the corresponding data record in the data file. For the address, programmers can use either the record number, as illustrated, or the record’s absolute file address or offset. The system maintains the index file in a specified order throughout its operation, making it easier to locate specific information. For example, if the program needs to access “Alice” in the data file, it locates her name in the index file and retrieves the record number 5, allowing it to proceed directly to record 5 in the data file.

IMPLEMENTING ISAM OPERATIONS

read(buffer, bytes)

write(buffer, bytes)

Moving the position pointer
seekp(absolute)
seekp(offset, direction)
seekg(absolute)

seekg(offset, direction)

tellp() and tellg()

Presenter
Presentation Notes
C++ programs build ISAM systems with block read and write functions in conjunction with the seeking and reporting, or “telling,” functions. The challenge for programmers is to build higher-level ISAM operations using lower-level file functions. Describing the steps for adding and searching for a data record illustrates the process. A more concrete and detailed example follows in the next section.

ISAM OPERATIONS:

ADD A DATA RECORD

Alice 5

Dilbert | 1

Wally | 4

Index File

New key

4

0
1| Dilbert 115 Elm 801-555-1234
2
3
4| Wally | 207 Church St. | 801-555-9876
5| Alice | 216 Sunset Ave. | 801-555-4567
6
7
Data File
New card
2

Presenter
Presentation Notes
1. To add a new record, the program seeks to the end of the data file and asks the stream to tell it the current address. The program saves the address for a subsequent operation.
2. It creates a new data record and writes it to the end of the file.
3. Next, the program updates the index file by seeking to its end.
4. It creates a new key record, copying a field from the new data record and its saved address. At some point, depending on how programmers have implemented the ISAM system, the program must reorder and save the index file.

ISAM OPERATIONS:
SEARCH FOR A DATA RECORD

Alice

Dilbert

Wally

Index File

3| [o

1| Dilbert 115 Elm 801-555-1234
2 2
3

4 Wally 207 Church 5t. 801-555-9876

5 Alice 216 Sunset Ave. | B01-555-4567
6
7

Data File

Presenter
Presentation Notes
1. Searching for a data record begins with the index file. The program searches for the key in the index file using a fast-lookup algorithm – the examples in the following section use a binary search.
2. Assuming that the program is searching for “Dilbert,” it locates the matching key record in the index file and gets the corresponding record number, 1 in this example.
3. The program seeks to record number 1 in the data file,
4. reading the complete record, retrieving Dilbert’s street address and phone number.

ISAM EXAMPLE VS
MODERN DBMS

Alice

Dilbert

Wally

Index File

0

2312 1| Dilbert 5678 115 Elm 801-555-1234
2
3

5678 4 | Wally 2312 207 Church 5t. 801-555-9876
5 Alice 9786 216 Sunset Ave. | 801-555-4567
6

9786 5 7

Index File Data File

Presenter
Presentation Notes
Generalizing the Rolodex example to a student or employee database may require adding an identification number to each record. For the program to search the data file for a specific ID, the ISAM system must include an additional index file whose keys bind ID numbers to record numbers. However, the records in a contemporary database may contain scores of fields, and searching on many of them is possible. Manually adding new index files and the operations surrounding them is tedious. Furthermore, a database may contain millions of records, too many to simultaneously maintain all the indexes in memory, requiring a more sophisticated searching algorithm. Modern database management systems elegantly solve these problems. Despite their power and elegance, their high-level, problem-oriented features still rely on the fundamental, low-level file functions illustrated by the Rolodex programs.

	ISAM / KSAM
	Isam architecture
	Data file
	Index file
	Implementing Isam Operations
	Isam Operations:�Add a data record
	Isam Operations:�search for a data record
	ISAM Example vs�Modern DBMS

