BULLETPROOF CODE (2)

String Streams

Delroy A. Brinkerhoff

Presenter
Presentation Notes
Chapter 8 introduced the concept of bulletproof code as code that detects incorrect user input and responds gracefully rather than “crashing,” looping infinitely, or misinterpreting the input. It’s relatively easy to detect numerical entries that are too large or too small, but it’s more difficult to detect data type or format errors. The solution is to enter all data as a string, examine it, change its format if necessary, and convert it to its final type.

STRING STREAMS

C-STRINGS

istream

[

istrstream

char® ¢_string

STRING OBJECTS

istream

I

istringstream

string

Presenter
Presentation Notes
String streams are a simple mechanism allowing C++ programmers to read input as a string, perform simple tests, and then reread or convert it to a different type. C++ supports two kinds of string streams, one for C-strings and one for instances of the string class. C++ can implement them with double inheritance, or, as illustrated here, with inheritance and aggregation. Either way, they exhibit the characteristics of strings and streams.

DATA CONVERSIONS

Programs and operating systems exchange console and command line data as
strings of characters

Some conversion occur “automatically” as part of the I1/O operations
cout <<
cin >>

Sometimes programs “manually” perform the conversion

Presenter
Presentation Notes
Converting between strings and numbers is a common operation, occurring whenever programs read data from or write it to the console. Programmers can conveniently ignore the conversion because many C++ operators, like the inserter and extractor, perform the conversions transparently or automatically. Programmers can also explicitly perform the conversions with functions like to_string.

STRING STREAM CLASSES

C-STRING string CLASS
<strstream> <sstream>
istrstream istringstream
ostrstream ostringstream

Deprecated

Presenter
Presentation Notes
For C-strings, the names of the header file and the input and output stream classes contain the characters “str,” distinguishing them from other stream types. The C++ 2011 standard deprecated these classes; nevertheless, they remain useful when dealing with C-string data.
The <sstream> header file specifies the string-class versions, and the class names include the word “string:” istringstream and ostringstream.

C-STRING CONVERSIONS

istrstream nl1("123");
istrstream n2("3.14");

int i;

double d;

nl > 1i;

n2 >> d;

cout << "i = " << 1 << endl;

cout << "d = << d << endl;

char
ostrstream
ostrstream

1 << 76 <<

cout << "a

f << 76.58

cout << "a

al[le0];
i(a, 100);
f(a, 100);

ends;

= << a << endl;

<< ends;

= << a << endl;

Presenter
Presentation Notes
C++ adopted several functions from C for converting between C-strings and numbers. However, the functions were not covered by a standard, so their adoption was inconsistent. Fortunately, C++ programs can use string streams to convert between C-strings and various kinds of numbers. The istrstream constructor takes a sequence of numbers in a C-string, and the extractor operator “reads” the converted number from the stream object.
Similarly, the ostrstream constructor takes a C-string variable and its maximum size as arguments, and the inserter operator “writes” numbers to the object, converting them to strings. The ends or end-string manipulator adds a null termination character at the string’s end.

string CONVERSIONS

string s1("123"); ostringstream ij;

string s2("3.14"); ostringstream f;
istringstream nl(sl);

istringstream n2(s2);

int ;- 1 << 76;
double df string sl1 = i.str();
’ cout << "s1 = " << sl << endl;
nl > 1i;
n2 >> d; f << 76.58;
cout << "1 = " << 1 << endl; string s2 = f.str();
cout << "d = " << d << endl; cout << "s2 = " << s2 << endl;

Presenter
Presentation Notes
The ANSI C++11 standard also added the to_string functions to the string class. Before that addition, C++ programs used string streams to convert between string objects and various kinds of numbers.
The string class streams work similarly to the C-string versions. The input string constructor takes a string object argument, and the extractor converts the string to a numeric value. Programs write numeric data to output string streams, and extract the resulting string object with the “str” function.

REREADING INPUT WITH
STRING STREAMS

Bill Gates:1 Microsoft Way, Redmond, WA:(403) 123-4567
Cranston Snort:1600 Pennsylvania Ave:(306) 678-9876

Albert Einstein:Princeton, NJ:(456) 123-8765

This is a comment
John Smith:123 Elm St.:801-555-1234

Presenter
Presentation Notes
We can use input string streams to solve a problem with the previous version of the Rolodex program and similar parsing issues. Given a string of text consisting of separate fields or tokens separated by delimiting characters, C++ programs can read the string left to right with the getline function, extracting the individual fields and discarding the delimiters. However, using getline this way fails if the line is empty. While the program could read the complete line and test its length, it’s difficult to reread the line from the file, and more difficult to parse the line with string functions than to read it one field at a time from the file.

REREADING INPUT WITH
STRING STREAMS

while (! in.eof()) string name;
{ getline(input, name, ':');
string line;
getline(in, line); string address;
getline(input, address, ':');
if (line.length() == 0 || line[@] == '#')
continue; string phone;

getline(input, phone, '\n');
istringstream input(line);
cout << left << setw(20) << name <<
setw(35) << address <<
setw(20) << phone << endl;

Presenter
Presentation Notes
Using a string stream, programs can read and test the complete line, and then reread it with getline, not from the file but from the stream. Although not part of the original requirements, we can add another feature, demonstrating the value of the technique. It’s a common practice in many simple system database files to allow comments designated with a sharp character in the first (left to right) position, followed by the comment. A simple addition to the test allows for this feature. The order of the two sub-tests is significant: indexing into an empty line is a runtime error, but testing the line’s length before indexing prevents it.

DATA INPUT WITH
istringstream

416:July 8:Gas Company:15.85
417:7/9:Auto Store:19.95
418:7/10:Grocery Store:47.50
419:Dec 5:Hardware Store:47.89
Deposit:8/19/2006:-:150.00

Presenter
Presentation Notes
In a time past, not so long ago for some of us, it was common for people to write checks to pay bills and make routine purchases. To ensure we didn’t overdraw our checking account, we recorded each check written and each deposit made, and kept a running balance. Assuming that we record our checks and deposits in a structured text file, we can write a simple program to display our check activity and calculate an account balance.

DATA INPUT WITH

1stringstream
double balance = 0; getline(input, type, ':');
while (!in.eof()) getline(input, date, ':');
{ getline(input, to, ':');
string entry;
getline(in, entry); double amount;
input >> amount;
if (entry.length() == 0@ || entry[0] == '#')
continue; if (type == "Deposit" || type == "deposit")
balance += amount;
istringstream input(entry); else
balance -= amount;

string type, date, to;

Presenter
Presentation Notes
The program distinguishes between the formats based on the first field. It prints the information in a well-formatted table and ends with the current balance. The program uses an accumulator to track the balance, adds deposits, and subtracts check amounts.

	Bulletproof Code (2)
	String streams
	Data Conversions
	String Stream classes
	c-string conversions
	string conversions
	Rereading input with�String streams
	Rereading input with�String streams
	data input with�istringstream
	data input with�istringstream

