EXTENDED EXAMPLES

Numbered Groups
Matcher Objects
The regex_replace Function

Delroy A. Brinkerhoff

Presenter
Presentation Notes
The previous section demonstrated that regular expressions can represent complex patterns and that the “regex_match” function can test whether a target string matches that pattern. This section extends those examples with a deeper exploration of numbered groups, matcher objects, and the “regex_replace” function.

GROUPS

ARITHMETIC EXPRESSIONS

REGULAR EXPRESSIONS

May be a constant or a variable (r)

Recursively formed by combining with Called a capturing or numbered group
operators Captures or saves matching text
Grouped with parentheses and treated as (?:r)

a whole

Non-capturing, non-numbered group

Consumes but does not save matching text

Grouped expressions are treated as a whole

Presenter
Presentation Notes
Drawing parallels between arithmetic and regular expressions can help us better understand the latter. Arithmetic expressions can be as simple as a constant or variable, or they can be made more complex by combining simple expressions with operators or grouping them with parentheses. Similarly, regular expressions can consist of an atom or character, a meta-character, or be made more complex by combining them with operators or grouping them with parentheses.
However, the parentheses in regular expressions go beyond building complex expressions from simple ones. Undecorated parentheses form “capturing groups” that save or extract substrings from the target that match the parenthesized sub-expression. Programs can access the saved substrings with a group number. Decorating the parentheses with the “?:” forms “non-capturing groups” that consume or match characters in the target without saving or numbering them.

ADDING NUMBERED GROUPS

string re = "([Dd]eposit|[1-9][0-9]*):[~:]+:[~:]+:\\d*\\.\\d{2}";
if (! regex_match(entry, regex(re)))
continue;

smatch m;
string re = "([Dd]eposit|[1-9][0-971*):([~:]+):([~:1*): (\\d*\\.\\d{2})";

if (! regex_match(entry, m, regex(re)))
continue;

Presenter
Presentation Notes
The original checkbook program employed one pair of grouping parentheses in the validating regular expression without accessing the captured substring. After validating the input, the program read each field with the getline function. Adding parentheses around the sub-expressions representing the fields in each line of the checkbook file offers a different data access method.

DATA EXTRACTION WITH
smatch AND NUMBERED GROUPS

smatch m;
string re = "([Dd]eposit|[1-9][0-91*):([~:]+):([*:1*): (\\d*\\.\\d{2})";

if (! regex_match(entry, m, regex(re)))

continue;
string type = m[1];
string date = m[2];

string to = m[3];
double amount = stod(m[4]);

Presenter
Presentation Notes
C++ numbers the groups from right to left, beginning with 1; the zeroth group saves the complete, unmodified target string. By adding capturing groups and a matcher object, the program can directly access the fields with the matcher’s overloaded index operator. The example uses a string matcher, so it returns the saved fields as strings, which the program must convert to other types when necessary.

NESTED & NON-CAPTURING GROUPS

((rp){m,n}) (2:(ry) 2) ((2:r3){n}) (((ry)))
RE number capturing groups left to right in the order of the opening parenthesis

RE do not number non-capturing groups

There isn’t a syntactic limit to how deeply RE can nest groups

The r’s are regular expressions

Presenter
Presentation Notes
Programs can nest groups without limit, complicating group numbering. C++ assigns group numbers left to right in the order of the opening parenthesis. Reading left to right, the RE numbers the first two groups 1 and 2, respectively. The inner parentheses are necessary to indicate the target of the quantifier, the values in the braces.
Although the next sub-expression has nested parentheses, only the inner pair forms a numbered group because the “?:” in the outer pair makes it a non-capturing group. Notice that the expression uses the question mark in two distinct ways. When used in conjunction with the colon, it designates a non-capturing group, but when used alone, it forms a simple quantifier.
The third sub-expression demonstrates a more authentic example. Quantified expressions only save the last occurrence of the repeated pattern, which the program typically doesn’t need. The program can ignore or discard it with a non-capturing group. The outer, numbered group collects all occurrences, which generally is the desired result.
The final sub-expression demonstrates unauthentically deep nesting. While it is syntactically correct, it’s rarely useful.

REGULAR EXPRESSION GROUPS
EXAMPLE

a

b C d e f

8
NOHOND BHIADAL -\ THONDBPIL -\ THOND) {43)”

(123) 456-7890 0 or | opening parenthesis; no groups
123-456-7890 3 digits; groups | and 2

123 456 7890 0 or | closing parenthesis; no groups
123.456.7890 0 or | space, dash, or period; no groups
12345678960 3 digits; groups 3 and 4

0 or | space, dash, or period; no groups

4 digits; groups 5 and 6

Presenter
Presentation Notes
Phone numbers in the United States consist of ten variously formatted digits. The first two illustrated formats are common; the last three are less so, but the example includes them for demonstration. The example also includes the inauthentic nested capturing groups to demonstrate the group numbering. The textbook includes a more authentic version. Please pause the video to study each section and its corresponding description.

CONSISTENT DATA FORMATS

if (regex_match(phone, regex("~$|"#.*")))
continue;

string re = "(2:\\QO2(O\\A){3PH)(2:\\))?[-\\.12CO\N\A){31)[-\\.I12(C(\\d){4})";
string format = "($1) $3-$5";

if (regex_match(phone, regex(re)))

cout << regex_replace(phone, regex(re), format) << endl;
else

cerr << "Unsupported format: " << phone << endl;

Presenter
Presentation Notes
Programs can validate input and locate specific data within it with the regex_match function. They can modify the matched data with the regex_replace function. In this example, the program matches U.S. telephone numbers entered in various formats and converts them to a single, standard format.
The first test detects empty and comment lines. The caret and dollar sign are anchors specifying the beginning and ending line positions, respectively. Without any text between them, they denote an empty line. The caret anchors the sharp character to the beginning of the line, denoting a comment. The vertical bar is the “or” operator, meaning that the expression matches either alternative.
The variable “re” stores the expression matching the different phone number patterns. The format string describes the final, standard output format, where the parentheses, space, and dash print verbatim, while the numbers refer to the group numbers of the matching data.
The replace function searches the program input saved in “phone” and compares it to the regular expression, replacing the matching data as specified by the “format” variable. The replace function returns the phone numbers in the standardized format. The simple example prints the numbers, but a more authentic program could save them as part of a larger dataset, such as a record in a Rolodex file.

	Extended Examples
	Groups
	Adding numbered groups
	Data extraction with�smatch and numbered groups
	Nested & non-capturing groups
	Regular Expression groups�Example
	Consistent Data Formats

