COMMA-SEPARATED VALUES

A Regular Expression Example

Delroy A. Brinkerhoff

Presenter
Presentation Notes
The comma-separated values or CSV format defines a standard protocol for representing tabular data in an otherwise flat text file. Information technologists often use the format to move data between otherwise incompatible spreadsheets or databases. Consequently, processing CSV files is a routine practice and an authentic problem.

CSV EXAMPLE INPUT

W12345678,Cranston Snort,cs@mail.weber.edu
W12345678, "Snort, Cranston",cs@mail.weber.edu
W12345678,Cranston Snort,cs@mail.weber.edu,"a,b"
W12345678,Cranston""Snort, cs@mail.weber.edu
W12345678,Cranston Snort,cs@mail.weber.edu,,Room 222

W12345678, "Snort, Cranston.,cs@mail.weber.edu
"W12345678","Snort, Cranston,cs@mail.weber.edu

Presenter
Presentation Notes
The lines in a test input file illustrate typical and uncommon CSV field formats. Each line represents one table row or record, with commas separating the columns or fields. If not for the unusual cases, parsing the file would be straightforward. The first special case allows users to include a comma in a field by surrounding it with double quotation marks. The second case allows embedding a double quotation mark by escaping it with another mark. Finally, two adjacent commas represent a valid but empty field. The last two lines illustrate unmatched quotation marks, an error the program detects and reports.

THE CSV PROGRAM DRIVER

int main()

{

while (!in.eof())
{
ifstream in("csv.txt"); string line;
getline(in, line);
if (!in.good()) parse(line);
{ }
cerr << "Error" << endl;
exit(1); return 0;
} }

Presenter
Presentation Notes
The program driver follows the now-familiar pattern of opening and testing the input file, and reading it by lines. The CSV program must open the file in text mode, ensuring that Windows systems map the carriage return newline sequence terminating each line to a single newline character. The program sends each line to the “parse” function, which extracts the CSV-encoded fields. The loop runs one extra time at the end, but the “parse” function rejects all empty lines.

void parse(string input)
{
if (regex_match(input, regex("/$|~#.*$"))) PARSING CSV
return; INPUT
smatch m;

ostringstream sout;

while (input.length() > 0)

{
if (regex_match(input, regex("[A\"]1*\"[*\"]1*")))
{
cerr << "Unbalanced \"" << endl;
return;
}
if (regex_search(input, m, regex("(*(2:\"([*\"1E\") [([, \N\P\\NT]*)) (22 [, (2:\\r\\N)]2)")
sout << left << setw(20) << regex_replace(string(m[1]), regex("(\"\")"), "\"");
input = m.suffix().str();
}

cout << sout.str() << endl;

Presenter
Presentation Notes
The “parse” function begins by detecting empty and comment lines, and rejects them by returning. It then builds the string matcher and output string stream objects. It loops through the fields in each line, extracting them until the line is empty. If the function detects unbalanced quotation marks, it aborts without displaying any output.
The “regex_search” function searches the remaining input for substrings matching the regular expression, saving any matching text in the matcher object, m. The “regex_replace” function replaces adjacent quotation marks with a single mark. The chain of insert operators formats the matched text and saves it in the string stream object. The “suffix” function locates the remaining unextracted characters in the input, which the “str” function returns. The assignment operator saves the remaining suffix characters in “input,” overwriting the current characters, effectively removing the matched text and shortening the input string.
When the loop ends, the “parse” function prints the accumulated and formatted fields.

CSV EXAMPLE REGULAR EXPRESSIONS

Np| N *$
A AN A
(relra)rs
ry = A" ([N]H)\)
ry = ([\\n]*)
ry=(?2:[,\\n]?)
(\"\") > \"

Presenter
Presentation Notes
The program uses four distinct regular expressions. The first utilizes the caret and dollar sign to anchor matching patterns to the beginning and ending of the line, respectively. When juxtaposed, they designate an empty line; when used in conjunction with the sharp character and dot operator, they represent a comment – any string beginning with a sharp.
The second RE detects unbalanced quotation marks. The beginning and ending sub-expressions match any character except a quotation mark with a single quotation mark between them.
Breaking the third and largest expression into three sub-expressions makes it easier to understand. The vertical bar is the OR-operator separating the two alternatives, while the parentheses form a numbered capturing group followed by the required third sub-expression.
The first sub-expression uses a non-capturing group, anchored at the beginning of the field, to match and discard any quotation marks surrounding text. The inner parentheses form a numbered capturing group matching one or more non-quotation mark characters, allowing the program to access them by number from the matcher object.
The second sub-expression processes typical fields separated by commas or a newline when it’s the last field on the line. (Windows systems map the carriage return newline sequence to a single newline because the program opens the file in text mode). The RE matches any character except a comma or newline. The parentheses form a numbered capturing group, saving the text in the matcher object.
The third and final sub-expression discards the comma or newline ending the last extracted field.
The final regular expression drives the replace function, replacing two consecutive quotation marks with one.

RETURNING CSV FIELDS

typedef vector<string> field list;

field list parse(string input)

{ field list fields;
while(...)
{
if (regex match(input, m, ...)
fields.push _back(regex replace(string(m[1]), ...));
}
}

return fields;

Presenter
Presentation Notes
Programs processing CSV-encoded files usually do more than format and print them. For example, if a spreadsheet or database program is importing data, it must store the extracted fields in its own format. The second version of the CSV program saves the extracted fields in a vector and returns it after parsing each line. The version is abridged and modified from the previous function, retaining only enough of the original to form a context for the changes.
Although it’s unnecessary for the example, the function demonstrates how a typedef statement creates a simplified type name based on a template class. The C++ regular expression system relies on this technique extensively, which is how it creates the type name “smatch.” The function uses the new name to specify its return type and create the vector storing the extracted fields.
The function extracts the fields as before with the match and search functions, but stores them in a vector instead of a string stream. It returns the vector after extracting all the fields from the input line.

	Comma-Separated Values
	CSV Example Input
	The CSV program Driver
	Parsing CSV input
	CSV example Regular Expressions
	Returning CSV fields

