
BUGS AND DEBUGGING

If debugging is the process of taking bugs out of a program,

then programming must be the process of putting bugs into a program

Delroy A. Brinkerhoff

Presenter
Presentation Notes
Programmers have a nasty habit of putting bugs into their programs. This section is a brief introduction to the kinds of bugs hiding in our programs and some of the techniques that we have of finding them.

THE
COMPILER

SYSTEM

Preprocessor Compiler Linker

Source Code

Executable
(Machine

Code)

Compiler

Presenter
Presentation Notes
We begin with a brief review of the C++ compiler system, which consists of three separate programs or components. The compiler component does the actual translation of a program into machine code, which the linker then links together with system resources to form a complete program or executable.

KINDS OF BUGS

• Syntax incorrect sequence of keywords, punctuation, etc.

Presenter
Presentation Notes
Programs consist of a very specific pattern of keywords, punctuation characters, and programmer created identifiers or names. Together, these make up a programming language's syntax. A syntax error occurs when this pattern is broken. Syntax errors are detected and reported by the compiler component.

SYNTAX ERRORS:
“RULES” FOR DEBUGGING

1. Work from the first error to the last (top to bottom)

2. Use the IDE’s features to navigate

3. The compiler indicates the line where the error is located, the bug is never
below that line but may be above it – work from the indicated line backwards

4. Modern compilers perform “error recovery” which can mask some errors

5. Don’t waste time searching for error numbers

Presenter
Presentation Notes
With experience, you'll become very proficient at locating and correcting syntax errors in your programs.
Here are my five rules or suggestions to help you achieve that proficiency. First, work from the top of the error list down. Sometimes one error can cause several different diagnostics or error messages. It's much easier to find and correct syntax errors one at a time beginning with the first.
Second, most IDEs will have some tool to help you navigate from the diagnostic message to where the compiler believes the error is located. In the worst case, the compiler will provide a line number, but a good IDE will allow you to click or double-click the error and jump to the incorrect line of code.
Third, sometimes the compiler doesn't detect and error until it has passed, sometimes by quite a bit. So, the syntax error may not be on the reported line. The error may above the reported line but it will never be below it. Start with the reported line and work backwards.
Forth, modern compilers perform an operation called error recovery. Unfortunately, that doesn't mean that they correct an error. Syntax forms a kind of a road map for the compiler. and while the syntax of a program is correct, the compiler "knows where it's at." But when there's a syntax error, the compiler can get lost. While it's lost, it can't check for additional errors. When it recovers from the first error, it can continue syntax checking the program. But it may have skipped some errors. So, if you correct an error, but see even more errors when you recompile the program, it just means that the compiler is checking code that it skipped previously.
And finely, fifth, the compiler component and the linker may provide error numbers. Don't waste your time Googling for those numbers. It's very rare that you find anything useful. Instead, focus on learning the syntax and the behavior of the linker.

SYNTAX ERROR DIAGNOSTIC

Presenter
Presentation Notes
Every compiler will have some way of displaying diagnostics or messages about the errors it detects. The diagnostics may appear on the console or, as with Visual Studio, in one panel or area of the user interface. Visual Studio has two such panels that may be selected by tabs. This an image taken from the output tab. In this example, the scroll bar on the right is used to scroll to the first error message. The diagnostic includes the name of the file where the error was found, the line number, in parentheses, where the compiler believes the error is located, a less than useful error number, and the compiler's guess about the specific syntax error. Sometimes this guess is very accurate, as in this example, but sometime the guess is worthless and even misleading. Again, knowing the correct syntax is the best way of finding and correcting the error.
Note that double-clicking on the error message, highlighted in blue, will take you to line 6 in the program. This isn't too impressive with small programs, but with programs consisting of many large files, this is a very convenient feature.

KINDS OF BUGS

• Syntax incorrect sequence of keywords, punctuation, etc.

• Link linker/loader unable to create a final executable

Presenter
Presentation Notes
The linker, also called a loader on Linux and macOS systems, takes individually compiled parts of a program, and links them together to form a complete program or executable. The linker detects and reports linker errors.

LINK ERROR DIAGNOSTIC

1>------ Rebuild All started: Project: Error3, Configuration: Debug Win32 ------
1>C:\Program Files (x86)\MSBuild\Microsoft.Cpp\v4.0\V110\Microsoft.CppClean.targets(75,5):

warning : Access to the path 'E:\TMP\CS1410 PAST\ERROR3\DEBUG\ERROR3.EXE' is denied.
1>C:\Program Files (x86)\MSBuild\Microsoft.Cpp\v4.0\V110\Microsoft.CppClean.targets(75,5):

warning : Access to the path 'E:\tmp\cs1410 past\Error3\Debug\Error3.exe' is denied.
1> Error3.cpp
1>LINK : fatal error LNK1104: cannot open file '****************.exe'
========== Rebuild All: 0 succeeded, 1 failed, 0 skipped ==========

Presenter
Presentation Notes
Unfortunately, the diagnostics produced by the linker are not easy to read and are often not very useful. The amount of useful content in the linker diagnostic depends on the cause of the problem. We'll see more complete examples of this when we study functions in a few weeks.
The diagnostics illustrated here result from a very specific problem that is discussed in detail in the next slide. For now, notice that the diagnostic always includes an error number. The number itself is of very little use, but notice that, at least in Visual Studio, the number begins with the letters LNK. This is the key for distinguishing a linker error from a syntax error. On a Linux or macOS system, the errors are identified by the letters LD, which denotes a loader error. Finally, in this specific example, note that the compiler is rebuilding a program signifying that has been compiled before. Also note that the message indicates that a file named "error.exe" can't be accessed or opened.

THE
LINKER

ASSEMBLES
FILES

pre
proc

.h

.cpp

.h

temp
file comp .obj

pre
proc.cpp temp

file comp .obj

pre
proc.cpp temp

file comp .obj

linker

libs

run
time

executable

Presenter
Presentation Notes
The most common linker error is an inconsistency between two or more files that must be joined together to form a complete program. At this early point in our study of C++, we're not able to demonstrate these inconsistencies, but we will revisit linker errors during of discussion of functions. But there is one special linker error that we might encounter now. Fortunately, it's easy to correct once we understand it. The linker creates a file to hold the executable code. If the file already exists as might happen if we compile the program fix an error, and then recompile the program, the linker must first delete the old file before creating a new file. However, if the program is still running, the executable file is said to be busy, And the operating system won't allow the linker to delete it, so the linker reports a link error. The linker error reported in the previous slide is caused by a running program that prevented the linker from creating a new executable file.

KINDS OF BUGS

• Syntax incorrect sequence of keywords, punctuation, etc.

• Link linker/loader unable to create a final executable

• Logical programmer didn’t correctly solve the problem

Presenter
Presentation Notes
Logical errors are where we'll spend most of our debugging effort. When a program runs to completion but does not produce the correct output, it is displaying a run-time error, which is caused by the programmer not solving or programming the problem correctly. We'll elaborate on logical errors in the next section.

KINDS OF BUGS

• Syntax incorrect sequence of keywords, punctuation, etc.

• Link linker/loader unable to create a final executable

• Logical programmer didn’t correctly solve the problem

• Runtime program fails by crashing or never completing

Presenter
Presentation Notes
Run-time errors are often hard to locate. This problem is made worse because programs with run-time errors may have different behaviors at different times or on different computers. Sometimes the crash. Sometimes they seem to hang. That is, they stop producing output but don't terminate. We're not currently able to demonstrate any of these kinds of errors, but, fortunately, we're also not writing code that is likely to create these errors either. We'll return to run-time errors later in the semester.

KINDS OF BUGS

• Syntax incorrect sequence of keywords, punctuation, etc.

• Link linker/loader unable to create a final executable

• Logical programmer didn’t correctly solve the problem

• Runtime program fails by crashing or never completing

• Task synchronization multiple tasks do not coordinate correctly

Presenter
Presentation Notes
Some programs can do more than one task at a time. To do this correctly, they must synchronize or coordinate their tasks. This kind of programming is often called concurrent programming and is well beyond the scope of CS 1410.

KINDS OF BUGS

• Syntax incorrect sequence of keywords, punctuation, etc.

• Link linker/loader unable to create a final executable

• Logical programmer didn’t correctly solve the problem

• Runtime program fails by crashing or never completing

• Task synchronization multiple tasks do not coordinate correctly

• Heisenbug program behaves differently while being debugged

Presenter
Presentation Notes
The term Heisenbug is a play on the name of the German physicist Werner Heisenberg, who introduced the uncertainty principle. In very broad terms, the uncertainty principle states that observing a system can change it. A program that behaves differently when being debugged than when running unobserved is said to have a Heisenbug. These too, are beyond the scope of CS 1410.

	Bugs and Debugging
	The Compiler System
	Kinds of Bugs
	Syntax errors:�“Rules” For Debugging
	Syntax Error diagnostic
	Kinds of Bugs
	Link Error Diagnostic
	The linker assembles Files
	Kinds of Bugs
	Kinds of Bugs
	Kinds of Bugs
	Kinds of Bugs

