
BLOCK STRUCTURE AND SCOPE

Each block defines a unique scope

Delroy A. Brinkerhoff

Presenter
Presentation Notes
Like Java, C++ is a block-structured language, which means that programmers create blocks with a pair of opening and closing braces. In this section, we explore some basic concepts related to blocks, especially scope.

INDENTATION

• Indentation helps the physical layout of code reflect its logical behavior

• Indented code “belongs to” or is nested inside a control statement

• Use indentation consistently

• Don’t mix styles

• Don’t mix indentation characters

• Indentation should make the code easier to read

Presenter
Presentation Notes
It’s customary for programmers to indent the statements in a block to show that they belong to or are nested in the block. Unlike Python, indentation is not syntactically significant in a C++ program. Programmers use indentation to make the physical appearance of the code better reflect its logical meaning.
Your code will look better if you use the braces and indentation consistently throughout a program. Specifically, you shouldn’t mix styles that place the braces in different locations, and you should always indent the same amount. Mixing indentation characters can also cause problems. Users can set the tab stops in a text editor to any value. For example, the default setting in Visual Studio expands tabs to four characters, while vi (my favorite text editor) expands tabs to eight characters by default. If the indentation in your program mixes tabs and spaces, it may become hard to read if viewed in a different editor. The overriding goal is that indentation should make it easier to read and understand a program.

BLOCKS

• A block is delimited by an opening and a closing brace: { and }

• Creates block or compound statements

• Blocks can be created anywhere in a program but are usually associated with
control statements, functions, etc.

• C++ syntax allows replacing any statement with a block or compound statement

• A block creates a new scope

Presenter
Presentation Notes
A block is set of statements enclosed in braces. Although C++ allows us to create blocks anywhere in a program, we typically reserve them to form logical structures. We’ll use them in this chapter to create block or compound statements.
In chapter 1 we learned that a statement is a single instruction telling the computer to do one thing. The textbook uses a metalanguage called BNF to formally illustrate that control statements are an extension to the basic instruction definition. But less formally, we can simply say that wherever a statement is allowed, we can substitute a block or compound statement. We’ll see examples of this substitution throughout the chapter. But for now, we focus on the connection between blocks and scope.

SCOPE

• Scope is the location in a program where a named item (often a variable) is
visible and accessible.

• Three main scopes:

• Local – inside a function

• Class – inside a class

• Global – throughout a program (generally avoided)

• Variables defined in one scope are not visible or accessible outside that scope

• Variable names must be unique within a scope

Presenter
Presentation Notes
Scope is the location or position in a program where a named item, such as a variable, is visible and accessible. Later, we’ll learn that variables can have more than one name and that the names may have different scopes. Although a program can have many blocks, each implementing a unique scope, there are three scopes important enough for programmers to name.
The braces that form the body of a function create a local scope. The variables, including parameters, are only accessible inside the function. For now, all our programs only have one function named main, making most of our variables local.
Member variables are part of a class that controls access to them with keywords like “public” and “private.” We’ll revisit member variables in more detail later.
Global variables are defined outside of a function or a class. Programs written for embedded environments or in the older C programming langue must often use global variables, but they are seldom needed in a well-structure C++ program, and we’ll avoid them.
A variable defined in one block or scope can’t be accessed in another. Furthermore, programmers can’t define two variables with the same name in the same scope. It is possible to nest one block in another, which implies that scopes can be nested. As you might expect, nesting makes scoping more complex.

THE UNIQUENESS RULE

• Variable names must be unique within
each scope

• Defining multiple variables with the same
name in the same scope is not allowed

• Possible, but potentially confusing, reusing
a name in nested scopes

if (. . .)
{

int counter;

if (. . .)
{

int counter;
. . . .

}
}

Presenter
Presentation Notes
While variable names must be unique within a single scope, we can have nested scopes. The example illustrates nested scopes implemented with a pair of nested if-statements. Each if-statement defines a variable named “counter.” When the statements in the inner if-statement access “counter,” they will use the variable defined in the nearest scope. Although the illustrated code is syntactically correct, it is potentially confusing and should be avoided. Java doesn’t permit this kind of nesting.

LOCAL

• int counter = 10;

• Initialized each time the variable comes
into scope

• int counter = 10;

• Initialized once when the program is first
loaded into memory

GLOBAL

SCOPE AND VARIABLE INITIALIZATION

Presenter
Presentation Notes
If a local variable definition includes an explicit initialization, the initialization takes place every time the variable comes into scope. If a global variable definition includes an explicit initialization, that initialization only takes place once, when the operating system loads the program.

	Block Structure And Scope
	Indentation
	Blocks
	Scope
	The Uniqueness Rule
	Scope and Variable Initialization

