
IF STATEMENTS

Simple Branching

Delroy A. Brinkerhoff

Presenter
Presentation Notes
If statements are the simplest control statement, but do not confuse simplicity with weakness or with a lack of usefulness. In this discussion, we will look at three different variations on if-statements, and most significant programs use at least two of them.

IF STATEMENT FLOW

if (test)

statement;

If the test is true, do the statement.

If the statement is false, then do nothing.

Test Statement
true

false

Presenter
Presentation Notes
A simple metaphor for the first variation is traveling down a road and a side road opens up. There is a gate that controls access to the side road. For an if-statement, that gate is a test expression. If the expression evaluates to true, then we take that the side road; if it evaluates to false, then we continue on the main road. Typically, the side road loops back to rejoin the main road but this is not an absolute requirement. For example, the if-statement may test for a possible error condition, which, if found, causes the program to exit.

Test Statement 2

Statement 1

false

true

IF-ELSE STATEMENT

• If test is true, do statement 1.

• If test is false, do statement 2.

• if (test)

statement1;

else

statement2;

Presenter
Presentation Notes
It’s possible to add an “else” clause to the basic if-statement. Now, if the test expression is true, the first statement executes, but if the test expression is false, then the second statement executes.

IF-ELSE VARIATIONS

if (Test)
{

Statement 1;
. . .

Statement n;
}
else
{

Statement 1;
. . .

Statement m;
}

if (Test)
statement 1;

else
statement 2;

if (Test)
{

statement 1;
}
else
{

statement 2;
}

Presenter
Presentation Notes
Wherever a single statement is legal, we may use braces to create a block or compound statement. Some programmers always use the braces – even for single statements. Which style you choose is realty just a matter of taste, but do be consistent.

Test 1 Statement 1true

false

Statement nTest n true

false

Statement m
(if all tests
are false)

IF-ELSE LADDER

Effects a multi-way branch.

Really, just an if-else statement nested in the else
branch of an if-else statement.

Evaluate tests top to bottom, do statement(s)
associated with the first true test, then leave the

ladder.

If no test is true and there is an else at the end
(without a test), do the else, otherwise do

nothing.

Presenter
Presentation Notes
The third variation is an if-else ladder. This arrangement builds a multi-way branch – the test expressions are evaluated from the top down, and the statement or statements corresponding to the first true test expression are executed. Whenever a test expression evaluates to true and the corresponding statements are executed, the control leaves the ladder. The ladder may optionally have an else at the bottom, which runs if none of the test expressions evaluate to true.

A ladder really just consists of an if-else statement nested in the false branch of an outer if-statement. There is no limit to how deeply the nesting takes place, which is equivalent to saying that the ladder may be arbitrarily long.

IF-ELSE LADDER

Syntax and Structure

if (Test 1)
{

Statement 1;
Statement 2;

. . . .
Statement j;

}
else if (Test 2)
{

Statement 1;
Statement 2;

. . . .
Statement k;

}
else if (Test n)
{

Statement 1;
Statement 2;

. . . .
Statement m;

}
else
{

Statement 1;
Statement 2;

. . . .
Statement n;

}

Presenter
Presentation Notes
If-else ladders are often written in a straight line as illustrated here, but some programmers format them diagonally to emphasize the nesting that is taking place.

EXAMPLES

if (line33 < line34)
line37 = line36 - line35;

if (income >= 1400 || interest > 750)
{

must_file++;
deductions = 1;
adjusted_income = line37;

}

if (score >= 95)
cout << "Grade: A\n";

else if (score >= 90 && score < 95)
cout << "Grade: A-\n";

else if (score >= 85 && score < 90)
cout << "Grade: B+\n";

else if (score >= 80 && score < 85)
cout << "Grade: B\n";

else if (score >= 75 && score < 80)
cout << "Grade: B-\n";

else (score < 75)
cout << "Grade: E\n";

Presenter
Presentation Notes
The example in the upper left corner is a simple if without an else and without braces. In the bottom left is a simple if, still without an else but with a block statement. On the right is an if-else ladder with a final else.

THE DANGLING ELSE PROBLEM

Test 1 Statement2
false

Test 2

Statement1

true

true

false

if (test 1)
if (test 2)

statement 1;
else

statement 2;

Test 1

Statement2Test 2

Statement1

true

true

false

fa
lse

Presenter
Presentation Notes
We conclude the if-else discussion with a caution: Be careful of the dangling else problem. Look at the code on the left, especially the indentation. It’s clear that the programmer meant that statement 1 should only run if both the test 1 and test 2 expressions evaluate to true. However, the indentation is only for humans and the compiler ignores it completely.

The left flow chart illustrates what the indentation suggests was the programmer’s intent. But the problem is that the else always matches with or connects to the closest if. The chart on the right illustrates how the nested if-statements really behaves.

FIXING THE DANGLING ELSE PROBLEM

if (test 1)
if (test 2)

statement 1;
else

statement 2;

if (test 1)
{

if (test 2)
statement 1;

}
else

statement 2;

Presenter
Presentation Notes
When looking at code that exhibits the dangling else problem, it is easier to understand it if you indent the else so that it aligns with the correct if. To implement what the indentation suggests was intended, you must insert braces as shown.

	If Statements
	If Statement Flow
	If-Else Statement
	If-Else Variations
	If-Else Ladder
	If-Else Ladder
	Examples
	The Dangling Else Problem
	Fixing the Dangling Else Problem

