
FOR LOOPS

Test At The Top

Determinant Iteration

Delroy A. Brinkerhoff

Presenter
Presentation Notes
For loops are a very common and a very useful control statement. They implement a determinant, test at the top iterative or looping control statement.



FOR SYNTAX AND BEHAVIOR

init

test

loop
body

(statements)

update

true

false

for (init; test; update)
statement;

for (init; test; update)
{

statement1;
. . . 

statementn;
}

Presenter
Presentation Notes
Being determinant means that the number of iterations that the loop will make is specified in the for statement itself. Each for statement includes three sub-expressions separated by semicolons and enclosed in parentheses:
 
The initialization statement establishes the initial value for the loop control variable – this is the starting point for the loop. The initialization statement is executed only once.
 
The test expression is the gate that controls if the loop continues or ends and is usually based on the value stored in the loop control variable. The loop continues as long as the test expression evaluates to true. Being a test at the top means that the test expression is evaluated at the top of the loop before the loop body is entered. This further means that if the test initially evaluates to false when the for loop is first entered, that the loop never runs.
 
The update expression runs at the end of the loop body. It typically changes the value of the loop control variable. Following the update, the test expression is reevaluated.
 
The top example illustrates a for loop with a single statement, while the bottom example illustrates a for loop with a block statement.



FOR-LOOP EXAMPLES

for (int i = 0; i < 10; i++) // 0-9
cout << i << " ";

for (int i = 0; i > 10; i++) // no output
cout << i << " ";

for (int i = 0; i < 10; i += 2) // 0,2,4,6,8
cout << i << " ";

for (int i = 10; i > 0; i--) // 10-1
cout << i << " ";

for (i = 79; i >= 0 && s[i] == ' '; i--) // all work in for
;

1.

2.

3.

4.

5.

Presenter
Presentation Notes
Illustrated here are five for loop examples:
 
The first example shows a for loop that begins at 0, increases by 1 during each iteration, and ends when i becomes 10.
The second example shows a for loop that begins at 0, would increases by 1 during each iteration if it ran, but does not run because the test initially evaluates to false.
The for loop in the third example begins at 0, increases by 2 during each iteration, and ends when i becomes 10.
The for loop in the fourth example begins at 10, decreases by 1, and ends when i becomes 0,
For loop in the last example has a null statement for a body – all of the work is done in the for statement itself. The loop starts at 79 (the end of the array), searches from the end of an array to the beginning for the first non-space character, and ends either when the beginning or left end of the array is reached or when a non-space character is found.



FOR-RANGE LOOPS

AKA For-Each Loops

Presenter
Presentation Notes
For range loops (sometimes called for-each loops) are a relatively recent addition to C++. We won’t go much beyond an introduction to for for-range loops this semester because we introduce only a small number of the data types on which they operate.



FOR-RANGE SYNTAX AND BEHAVIOR

end of
range

loop
body

(statements)

false

true

get next
element

for (definition : range)
statement;

for (definition : range)
{

statement1;
. . . 

statementn;
}

Presenter
Presentation Notes
The for-range loop consists of a loop control variable definition, colon separator, and an ordered range of interable data. Iterable data are instances of classes that have a well-defined order that is processed with the “begin” and “end” functions. The string class is one of the best known iterable classes; the vector classes (similar to an ArrayList) is another common example. During the first iteration, the first element or value is extracted from the range and stored in the loop control variable; during the second iteration, the second value is extracted from the range and stored in the loop control variable. And so on until all the elements in the range have been processed.



FOR-RANGE EXAMPLES

string s = "Hello, World!";
for (char c : s)

cout << '[' << c << ']';

for (char c : "Hello, World!")
if (isalpha(c))

cout << c << " ";

int a[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
for (int i : a)

cout << '[' << i << ']';

1.

2.

3.

Presenter
Presentation Notes
The behavior of a for-range loop is much easier to see in an example:
 
In the first example, we explicitly create an instance of the string class, which is iterable, that is, the string class defines a “begin” and an “end” function. The for-range loop prints the characters in the string to the console one at a time. Note that in C++ the string class is spelled with a lower case “s” rather than the capital “S” used in Java. Strings will be formally introduced in a few chapters.
The second example is very similar to the first. Although it looks like the for-range loop is iterating over the characters in the string constant, the compiler has in fact implicitly or invisibly created another instance of the string class. The “isalpha” function, which is covered in detail later in this chapter, returns true if the argument is an alphabetic character (A-Z or a-z). The alphabetic characters from the string constant are printed to the console, while non-alphabetic characters are skipped or filtered out.
In the final example, it looks like the digits in an array are printed out. But again, the compiler is invisibly creating an instance of a class – in this case, an instance of the vector class, which is quite similar to an ArrayList. This transparent conversion of an array to a vector only works in very limited situations.


	For Loops
	For Syntax and Behavior
	For-loop Examples
	For-Range Loops
	For-Range Syntax and Behavior
	For-Range Examples

