
SPECIAL VARIABLES:
FLAGS AND ACCUMULATORS

Variables used for specific tasks

Delroy A. Brinkerhoff

Presenter
Presentation Notes
Sometimes variables are used in very specific ways in a program, and it is often convenient to create and name categories that describe these special variables. Two of those categories, flags and accumulators, are the subject of this section.

STOPWATCH STATE DIAGRAM

THE PROBLEM

Presenter
Presentation Notes
We will use the example of a stopwatch to help us better understand the role that flags play in a program. The stopwatch illustrated here has a single button that starts and stops the watch. This is a toggle button: if the watch is stopped, pressing the button starts it running; if the watch is running, pressing the button stops it. How the watch behaves or what it does when the button is pressed depends on what it is currently doing.
Computer scientists use a graphical notation or language, called a state diagram, to help describe and understand this behavior. The rectangles denote the states or conditions that a program might be in at any time. The states might describe what the program is doing; in this example the stopwatch is either stopped or is running. Or the states might represent a location or position; if the program described an elevator, then there could be one state for each floor on which the elevator car can stop.
The arrows represent the allowed transitions – that is, the ways that a program can change states. The arrows can be labeled with the events that trigger or cause a state change. Pressing the top button on the stopwatch causes the watch to either start or to stop. The big circle denotes the start state – the state that the program enters when it is first loaded into memory and begins to execute.

STATE DIAGRAM

bool stopped = true;
. . .

if (stopped)
{

// code to start the watch
stopped = false;

}
else
{

// code to stop the watch
stopped = true;

}

EXAMPLE

FLAGS

• A flag is a variable that "remembers"
what the program is doing

• Flags are set at one place in a program
and tested at a different place time

• What program does depends on the flag

Presenter
Presentation Notes
A flag is just a variable that “remembers” what a program is doing or where it is at some point during its execution – that is, it remembers what state the program is in. Flags are just variables, so the values stored in them can change as the program runs. Using if-statements, switch-statements, or loops, the program can change its behavior based on the values stored in a flag.
Flags are generally either Boolean or integer variables. Booleans are appropriate when there are only two states, such as in the stopwatch example: the watch is either stopped or running (that is, not stopped). If there are more than two states or conditions, then a flag implemented as an integer is appropriate.

ACCUMULATE

• “To gather or pile up especially little by
little.”

• Accumulator variables

• Must be initialized (usually to 0)

• Are used in loops to “gather” data

• For example, measuring flour into a bowl

• Initially the bowl must be empty

• Accumulates all the needed flour

Presenter
Presentation Notes
especially little by little.” This is a good starting definition for the next category of variables: accumulators. An accumulator is a variable that accumulates or gathers data over time. In practice, they are most often initialized to 0 and the accumulating or gathering takes place inside a loop.
As an example, think of a bowl: when I make bread, I use a one-cup scoop to measure flour out of the bag and an into the bowl. Four scoops equal the four cups of flour my recipe begins with. But the bowl must be empty before I start adding flour or I’ll have the wrong amount and the recipe won’t work.

ACCUMULATOR EXAMPLES

int n;
int count = 0;

...
while (...)
{

cin >> n;
count++;

}

double sum = 0;
...

while (...)
{

double score;
cin >> score;
sum += score;

}

double balance = 0;

...

while (...)

{

if (...)

balance += amount;

else

balance -= amount;

}

Presenter
Presentation Notes
The first example illustrates how an accumulator, the variable count, can be used to count the number of data items that a program reads.
In the second or middle example, data that is entered one at a time is summed or totaled in the accumulator variable named sum.
The last example demonstrates that values can be added to or subtracted from the accumulated value based on a test carried out inside the loop.

	Special Variables:�Flags and Accumulators
	The Problem
	Flags
	Accumulate
	Accumulator Examples

