
VARIABLES & MEMORY ADDRESSES

All variables have an address

Delroy A. Brinkerhoff

Presenter
Presentation Notes
Pointers are a kind of variable that allow programmers to work with memory addresses, so we begin by exploring the relation between variables and addresses. This section reviews and extends the concepts about variables that were introduced in chapter 1.



VARIABLES

• Variables have

• Name

• Address or location in memory

• Content

0x000000abcounter 123

Presenter
Presentation Notes
Variables are a named location in main memory that have three important characteristics: a name, a content, and a memory address. The variable’s name must be unique within the defining scope, which, for now, we’ll take to mean that we can’t have two variables with the same name (we’ll see later that this is an over simplification). The content of a variable can change or vary over time, which is why this construct is called a variable, but the address is a fixed and unchangeable attribute.



VARIABLE CONCEPTS

• Machine code does not use variable names, it uses the variable’s address

• The compiler maps the name to an address

• In a program, the name can represent the address or the content stored at that address

• Name used as an address

• counter = 5;

• Name used as the content

• balance = counter * 10;

• cout << counter << endl;

Presenter
Presentation Notes
When the compiler translates C++ source code into machine code, all variable names appearing in the source code are replaced in the generated machine code by the variables’ address. How the address is used in the machine code depends on where the variable’s name appears in the original C++ statement. When the name appears on the left hand side of the assignment operator, the name is translated strait to the address of the variable. In essence, the statement is saying, “Store the value appearing on the right hand side of the assignment operator in main memory at this address.”
When the variable name appears on the right hand side of the assignment operator, or otherwise is used as an expression, it is as if the statement is saying, “Load the value stored at this address in main memory to use in some way.” The compiler is able to tell which aspect of a variable, its address or its content, is needed by how the variable name is used in the original C++ code.



MEMORY 
METAPHOR

Presenter
Presentation Notes
The addresses of houses along a city street forms a useful metaphor for variables and variable addresses. Just as the addresses of houses increase by a fixed amount as we move up the street, so to do the addresses of variables. In this example, the address of each house is four greater than the address of the previous house. In terms of variables, this scheme is appropriate for a sequence of 4-byte integers.



MEMORY VIEWED AS AN ARRAY

.

.

.

.

.

.

316

320

324

328

Presenter
Presentation Notes
Modern computers typically have several gigabytes of main memory, which can conveniently be viewed as a one-dimensional array. In this view, the address of each byte of memory is just the array index of that byte. The address of each integer in a sequence of 4-byte integers is the address or the array index of the first byte of the integer (ignoring the big-endian vs. little-endian problem).



POINTER VARIABLES

• Pointers are variables that hold or store the memory addresses of other 
variables or data

• An address is a location in main memory that cannot change

• C++ provides several operators that operate on pointers

Presenter
Presentation Notes
Pointers are variables that are able to store memory addresses. That is, they hold the address of another variable. Although an address is a fixed and unchanging quantity, like the address of a house, the contents of a pointer are allowed to change because it is a variable. C++ provides several operators that allow programmers to work with or operate on pointers. The next section examines these operators.


	Variables & Memory Addresses
	Variables
	Variable Concepts
	Memory Metaphor
	Memory Viewed As An Array
	Pointer Variables

