
POINTER OPERATORS

Working with pointers and

variable addresses

Delroy A. Brinkerhoff

Presenter
Presentation Notes
Conceptually, pointers are a bit more challenging than are most of the concepts covered in the previous chapters. One aspect of pointers that contributes to their complexity are the operators used to work with them. So our goal in this section is to introduce the operators and the symbols used to denote them, and to introduce their basic behaviors. We will elaborate on these basic behaviors and see some basic uses for pointers in subsequent sections.

IMPORTANT OPERATOR CONCEPTS

• There are a limited number of characters on the keyboard, forcing computer
languages to reuse some characters

• Operators that have multiple meanings are said to be overloaded

• Overloaded operators whose meaning depends on where they are used are said
to be context sensitive

• As you study the pointer operators, take note of

• The symbol or characters forming each operator

• Where the operators are used

• The meaning and behavior of each operator, which is often tied to the operator’s name

Presenter
Presentation Notes
The reality is that there are a limited number of characters available on the keyboard to use as operators, which forces computer programming languages to use some characters for multiple operators. When an operator has more than one use it said to be overloaded, which, as you might imagine, makes learning to distinguish and use the various operators a bit more difficult. The compiler is able to distinguish which meaning to give to an operator by how and where it is used – we say that the symbol or characters are context sensitive.
As you study the pointer operators, please take note of the character or characters used to form the operator, where the operator appears in a program, how it is used, and the meaning that it has, that is, the behavior it exhibits.

POINTER OPERATORS

Operator Name Example
* Pointer Definition int* i;

Person* pptr;

* Dereference, Indirection *i = 123;
cout << *int_ptr << endl;

& Address of Person p;
pptr = &p;

new New pptr = new Person;

delete Delete delete p;
delete pptr;

-> Arrow cout << pptr->name << endl;

Presenter
Presentation Notes
The table presents six operators, showing the symbol, that is, the sequence of characters that form the operator, the operator’s name, and a very brief example showing how the operator is used.
The first two operators are both formed by the asterisk character. The best way to tell them apart is to notice that the first operator is used to define a variable. That means that the operator always appears between a data type name and a variable name. The data type may be any of the primitive data types introduced in chapter 1 or it may be a user-created type such as a class. The asterisk is a fundamental part of defining a pointer variable that is able to store an address.
The dereference operator is perhaps the most challenging pointer operator, challenging enough it is the subject of the next section by itself. In the two examples illustrated here, notice that the dereference operator, the asterisk, is used with a variable name, which is the most common use.
Next is the “address of” operator that takes just one operand, which is always a variable name. The address of operator, together with the variable name, form an expression that represents the address of the variable in main memory.
C++ uses the new operator, just like Java, to allocate memory for a new object. However, Java has a mechanism to clean up memory when an object is no longer needed; C++ lacks this mechanism and so programmers must use the delete operator to dispose of objects created with new.
Finally, the arrow operator is a selection operator similar to the dot operator you used in Java. It’s left hand operand is often the name of an object and the right hand operand is a part of the object.

POINTER OPERATOR EXAMPLES

int i;
i 0x0a000010

Presenter
Presentation Notes
To demonstrate the behavior of two common and relatively simple pointer operators, a series of simple C++ statements are displayed on the left while an abstract representation of what is taking place in main memory appears on the right.
The first statement defines an integer variable named i, which is abstractly depicted as a rectangle representing the allocated memory. At this point i is uninitialized, that is, no value is stored in i, and correspondingly, the contents of the rectangle are left blank. Nevertheless, i does have an address, which is illustrated with an arbitrary value.

POINTER OPERATOR EXAMPLES

int i;
int* p;

p 0x0a000014

i 0x0a000010

Presenter
Presentation Notes
The next statement defines a pointer-to-an-integer variable named p, also represented by a rectangle. It’s important to notice the asterisk appearing between the data type “int” and the variable name “p.” Spaces here are not significant: you may have space on either side, both sides, or neither side of the asterisk. I place the asterisk with the data type as I think of it as modifying the type: it’s not an int but a pointer to an int.

POINTER OPERATOR EXAMPLES

int i;
int* p;

i = 123;

p 0x0a000014

123i 0x0a000010

Presenter
Presentation Notes
The third statement initializes i to 123, which is represented by writing 123 inside the rectangle that represents the variable in memory.

POINTER OPERATOR EXAMPLES

int i;
int* p;

i = 123;
p = &i;

0x0a000010p 0x0a000014

123i 0x0a000010

Presenter
Presentation Notes
Finally, the address of i is calculated with the “address of” operator, which is formed by the ampersand. Graphically, this is represented by taking the address of i and storing that value inside the rectangle that represents the pointer variable p.

	Pointer Operators
	Important Operator Concepts
	Pointer Operators
	Pointer Operator Examples
	Pointer Operator Examples
	Pointer Operator Examples
	Pointer Operator Examples

