DEREFERENCING A POINTER

The Dereference Operator

The Indirection Operator

Delroy A. Brinkerhoff

Presenter
Presentation Notes
Dereferencing a pointer is one of the most challenging pointer operations to understand. And yet, without this operation, much of what we do with pointers would not be possible. The operation described here is called “dereferencing a pointer,” but the operator that performs this operation has two different names: it is naturally called the “dereference operator,” but it is also called the “indirection operator.” This last name gives us some insight to how the operator works and how the overall operation behaves.

Tom's
Home

Tom’s Home

430
Broadway

430 Broadway

Restaurant

430 Broadway

Y |dinner >

Presenter
Presentation Notes
We begin with a more concrete metaphor that should be a little easier to understand.
Tom and friends are meeting at a restaurant for dinner. The main group goes directly to the restaurant and gets dinner. Dilbert is coming separately and doesn't know the location of the restaurant, but he does know where Tom lives. Tom leaves a note on his front door that has the address of the restaurant where the group is dining. Dilbert first goes to Tom's house, where he finds the address of the restaurant on Tom's front door. After getting the address of the restaurant, Dilbert is able to go there, meet the group, and order dinner. Dilbert is able to find the address of the restaurant indirectly by first going to the address where Tom lives. Hence, the name “indirection operator.”

A FILE SHORTCUT

D:\dab\AppData\Roaming\

Spotify\Spotify.exe _—_L» Spotify executable file

Desktop
D:\dab\AppData\Roaming\

Spotify\Spotify.exe

Presenter
Presentation Notes
For a more abstract example, we return to the file shortcut presented earlier. We have one executable program file that allows us to stream music to our computer. There are several reasons why it’s not feasible to just copy the file to other locations, the desktop for example, from where we might want to launch the program. So, we make a shortcut link in those locations.
Each shortcut consists of another file, but the contents of the shortcut file is the address or full pathname of the original executable. The operating system knows about shortcuts and knows how to use them to launch a program. Specifically, if I double click on a shortcut, the operating system opens the shortcut file, reads the pathname stored there, and then launches the program whose pathname was stored in the shortcut. The operation of accessing one file indirectly through another file is called dereferencing.

DEREFERENCING A POINTER

int i; // restaurant

i 0x0a000010

Presenter
Presentation Notes
Just as we did before, we have a series of C++ statements on the left and an abstract representation of what is taking place in memory on the right.
Our first statement defines an integer variable named i, which has an address but an undefined content. This variable is analogous to the restaurant in the Tom and Dilbert metaphor.

DEREFERENCING A POINTER

int i; // restaurant

int* p; // Tom’s house i 0x0a000010

D 0x0a000014

Presenter
Presentation Notes
Next, we define a pointer-to-an-integer named p. It too has an address but an undefined content. The pointer is analogous to Tom’s house in the Tom and Dilbert metaphor.

DEREFERENCING A POINTER

int i; // restaurant
et pi /) fom's house i 123 0x0a000010
i = 123;

P 0x0a000014

Presenter
Presentation Notes
We initialize the variable i, and represent that by writing the initial value inside the rectangle representing i in main memory. Notice that the address is unchanged.

DEREFERENCING A POINTER

int 1i; // restaurant

RO p) Weuls heuse i 123 0x0a000010>
i = 123;

p = &1i;

p (Ox0a000010) 0x0a000014

Presenter
Presentation Notes
The fourth statement initializes the pointer variable p by calculating the address of i with the address of operator and storing the address of i into pointer variable p.

DEREFERENCING A POINTER

int 1i; // restaurant

RO p) Weuls heuse i 123 0x0a000010>
i = 123;

p = &1

cout << *p << endl;

p (Ox0a000010) 0x0a000014

Presenter
Presentation Notes
The fifth and final statement dereferences pointer variable p. First, notice that the two asterisks represent different operators. The first asterisk is used to define the pointer variable p. The second asterisk is the indirection or dereference operator. The expression “*p” refers to the contents of variable i but does so indirectly through the pointer variable p. That is, *p allows us to print the content of variable i without using the name i. The highlighted cout statement will print 123.
In terms of the contents and addresses of the variables, the dereference operator takes two trips to memory to retrieve the value 123. First, the computer looks in memory at the address of variable p and loads the value stored there, which is an address. It then goes to the address just read from variable p and loads the value stored at that address, that is 123.
Like the shortcut example, I can have one integer variable, namely i, but I can access the contents of i from multiple, convenient locations within my C++ program with pointers, such as pointer variable p.

	Dereferencing A Pointer
	Slide Number 2
	A File Shortcut
	Dereferencing A Pointer
	Dereferencing A Pointer
	Dereferencing A Pointer
	Dereferencing A Pointer
	Dereferencing A Pointer

