
STACK AND HEAP

Where Data Goes

Delroy A. Brinkerhoff

Presenter
Presentation Notes
Java only provides one way of creating new objects and the memory to hold those objects is always allocated from a single, internal structure called the heap. Alternatively, C++ provides two ways of creating objects. The memory to hold those objects is allocated from one of two structures called the heap and the stack. How objects are created determines from which structure the memory is allocated. Our task in this video is to understand the heap and the stack and how each manages the memory in their control.



LOGICAL 
MEMORY 
LAYOUT

A program organizes its data based 
on the tasks that the memory is used 
for.

Different areas behave differently, 
that is, they are managed by different 
algorithms.

Data are stored in one of three areas

1. Global and static area

2. Stack

3. Heap

Presenter
Presentation Notes
Whenever a program runs, it partitions its memory into different functional units or sections. Although the memory organization presented here describes the Unix operating system running on old computers using a memory management model no longer used, it still accurately depicts the major memory functional sections.
Three sections store program data or variables: the static and global section, the stack, and the heap. The two sections that are most important for us are the heap and the stack. Both of these sections are expected to grow into unused memory as the program runs. Both the heap and the stack manage memory but they do so using different algorithms. That is, they don’t manage memory in the same way, and so they behave differently.



GLOBAL AND STATIC DATA

• Static data was introduced in chapter 1

• Includes the “static” keyword as a part of its definition

• Memory is allocated at program startup and deallocated when the program ends

• Global data is defined outside of classes and functions

• Memory is allocated when the program is loaded into memory

• Memory remains allocated until the program ends

• Values stored here remain available throughout program execution

• Global data is problematic and its use discouraged

Presenter
Presentation Notes
Static data was introduced in chapter 1 and is created by adding the “static” keyword to a variable definition. Memory to hold static variables is allocated when the program is loaded into memory and begins to run; the memory remains allocated throughout program execution.
Global data are defined outside of any function or class. Like static data, global data is allocated when the program runs and is deallocated when the program ends. However, global data can potentially cause a great deal of trouble and its use is strongly discouraged.



STACK

Last In First Out

Automatic variables are store on the stack

Stack

push pop

Presenter
Presentation Notes
A stack is a common data structure. Data are stored on a stack with the push operation and are removed with the pop operation. The main feature of a stack is that the last item pushed onto the stack is the first item popped off. That is, a stack is a last in, first out, or LIFO, data structure. As a consequence, all data are removed from the stack in exactly the opposite order in which they are stored, and there are never any “holes” in the stack. That is, there is never any unused memory below the stack top or in the middle of allocated or used memory).
Push and pop are simple operations, which means that memory management with a stack is fast and efficient.



HEAP

Allocated memory remains available to the 
program until it returned to the heap (or lost)

Memory allocated on the heap may be 
returned in any order

Lost memory becomes garbage

Dynamic variables are stored on the heap

Presenter
Presentation Notes
Memory is allocated on the heap with the “new” operator and remains allocated until it is deallocated with the “delete” operator. There is no requirement to deallocate and return memory to the heap in any specific order, which means that it is possible to have unused or deallocated memory, represented in the illustration by white rectangles, anywhere within heap memory.
When a block of memory is requested with the new operator, the memory manager must scan through all of the available memory until a block large enough to satisfy the request is found. Whenever memory returned to the stack by the delete operator results in two deallocated blocks being adjacent to each other, the memory manager must coalesce the blocks into one so as to better satisfy later requests for large blocks. Therefore, the algorithms that manage the heap are more complex than the algorithms that manage the stack, which means that memory management on the heap is slower than on the stack. Nevertheless, the heap has a greater flexibility that is necessary to solve some problems.


	Stack And Heap
	Logical Memory Layout
	Global And Static Data
	Stack
	Heap

