DYNAMIC MEMORY: NEW & DELETE

Allocating and Deallocating Memory

Delroy A. Brinkerhoff


Presenter
Presentation Notes
The C++ new operator is identical in every way to the Java new operator. The word “dynamic” is often used to describe an action that occurs while the program is running. So it is appropriate to say that both languages use the new operator to dynamically allocate memory to running programs. However, the two languages take quite different approaches to deallocating memory initially allocated with new. Java implements an automatic garbage collector to clean up discarded objects, while C++ programmers must explicitly deallocate dynamically allocated memory with the delete operator.


THE NEW OPERATOR

Allocates memory from the heap

Calls the constructor if the memory is being allocated for an instance of a
class

Returns the address of the allocated memory



Presenter
Presentation Notes
The new operator performs three main tasks:
It allocates memory from the heap. It must scan through the available memory until it finds a contiguous block of memory large enough to satisfy the request.
In C++, it’s possible to dynamically allocate memory for all legal data types. If the memory is allocated for an instance of a class, that is, for an object, then an appropriate constructor is called to build or construct an object in the newly allocated memory.
Finally, new returns the address of the allocated memory.


ALLOCATING MEMORY

C++ JAVA
char* Cc = new char; Character ¢ = new Character () ;
double* scores = new double[size]; double ] scores = new double[size];

Person* P = new Person; Person P = new Person();


Presenter
Presentation Notes
The full syntax surrounding dynamic memory allocation with new is quite similar for both languages but there are also some important differences. The first difference that you should notice is that the C++ variables storing the memory returned by new are always pointers. Next, in C++, programmers can allocate memory for any data type, while in Java they may only allocate memory for an object. So, as illustrated here, a Java programmer must instantiate an instance of the Character wrapper class rather than a primitive char as may be done in C++. Finally, in Java, empty brackets denote an array rather than C++’s pointer notation.


ABSTRACT REPRESENTATION

scores 7

heap

stack


Presenter
Presentation Notes
The figure displayed here provides an abstract representation of the results of the three statements from the previous slide. The memory needed to store a character, an array, and an instance of the Person class is allocated on the heap, but the pointer variables that store the addresses of these data items are typically, but not always, created as automatic variables on the stack. Think of the pointers as the name of or a handle for the variables allocated on the heap.


DEALLOCATING MEMORY

C++ JAVA
delete oF // deallocates a single char
delete[] scores; // deallocates an array

delete p; // deallocates one object


Presenter
Presentation Notes
The delete operator does the opposite of the new operator: it deallocates memory originally allocated with new and returns it to the free store, that is, it returns the memory to the heap. The variables c, scores, and p are all pointers that point to dynamically allocated memory. Only one element of the syntax is noteworthy: empty square brackets are added to delete when deleting an array. This notation is most important when dealing with an array of objects.
There are no Java statements that correspond to C++’s use of delete. Java implements an automatic garbage collector that cleans up discarded heap memory, but there are some disadvantages to that approach. Java’s garbage collector is based on a mark and sweep algorithm. It begins by marking all objects as garbage. It then follows all of the references in a Java program and removes the mark from all reachable objects. Finally, it sweeps up all marked objects and returns them to the heap.
A Java programs must suspend all useful work while the garbage collector runs. It is far more efficient to explicitly deallocate memory when we are done with it than it is to ran a garbage collector. It is easier to write correct programs in java than it is in C++, but once the program is correct, the C++ version will always outperform the Java version.


	Dynamic Memory: New & Delete
	The new Operator
	Allocating Memory
	Abstract Representation
	Deallocating Memory

