
POINTER OPERATIONS

Arithmetic With Pointers

Delroy A. Brinkerhoff

Presenter
Presentation Notes
One of the differences between Java references and C++ pointers is that C++ pointers allow a few, simple arithmetic operations while Java references do not. This difference is one of the primary reasons that Java was created in the first place: pointer arithmetic is both error prone and can lead to insecure code. These problems notwithstanding, pointer arithmetic also allows incredibly fast and efficient operations.Pointers are really just integers that are used in a very specific and limited way. That implies that it is possible to perform some arithmetic operations on them, but not all the possible operations are meaningful or useful. Of course, all of the operations presented here are both well-defined and useful.

RELATIONAL OPERATIONS

• int* i1;

• int* i2;

• Person* p1;

• Person* p2;

• if (i1 == i2)

• if (i1 != i2)

• if (p1 == p2)

• if (p1 != p2)

• int* i1 = nullptr;

• int* i2 = 0; //zero

• Person* p1 = nullptr;

• Person* p2 = 0; //zero

• while (i1 == nullptr)

• while (i2 != 0)

• while (p1 == nullptr)

• while (p2 != 0)

• nullptr replaces NULL and 0

Presenter
Presentation Notes
It is useful to compare two pointers for equality or inequality as illustrated on the left. The == and != operators really compare the addresses, as integers, stored in the pointer variables: if the addresses are equal, then the pointers point to the same object, if the addresses are not equal, they pointer to different objects.All languages that use pointers or references have a null-value that is used to indicate that a pointer variable is not pointing to anything. Pointer and reference variables are initialized to this null-value so that the program can detect when they point to valid data. nullptr is a C++ constant that represents the null-value and is used just as null is used in Java programs. C++ also recognizes two older ways of representing the null-value: NULL, spelled with all uppercase letters, and the digit 0.

SECURE PROGRAMMING

• Important pointer facts:

• Pointer variables are not automatically
initialized

• Using a null pointer causes an error: e.g.,
you can’t access a member if the pointer
doesn’t point to an object

• Using uninitialized pointers causes difficult
to find errors and are a security threat

• Steps to minimize errors and enhance
security:

• Initialize pointers: Person* p = nullptr;

• Test the value stored in a pointer before
using it – the underlying problem
determines the test and the action

• if (p == nullptr)

• if (p != nullptr)

Presenter
Presentation Notes
Writing programs with pointers can be tricky, but the payoff are programs that are fast and efficient. Pointer errors or bugs are notoriously difficult to locate and even worse, they can make the program insecure by creating a defect that can be exploited for an attack on the program. When using pointers in a program, keep in mind three important facts:Pointer variables are not automatically initialized. So, the first step to writing secure, error-free programs is to always initialize a pointer variable when it is first defined.It’s not possible to access data through a null-valued pointer. For example, a common error is trying to access member variables or functions when the pointer doesn’t point to an object. Always test the pointer and take an appropriate action, like printing an error message, if it is null.Uninitialized pointers contain a random bit-pattern, informally called garbage. Locating an error caused by an uninitialized pointer is challenging because the program behavior depends on the random bit-pattern, which is, well, random. Best practice is to always test the value stored in a pointer before using it. Doing this assumes that the pointer was initialized when it was defined. The exact test and the action taken depends on the problem that the program solves.

POINTER ARITHMETIC, PART 1

0x00ffaa00
0x00ffaa01
0x00ffaa02
0x00ffaa03
0x00ffaa04
0x00ffaa05
0x00ffaa06
0x00ffaa07

p1

p2

A
B
C
D
E

G
H

F

char data[] = {
'A', 'B', 'C', 'D',
'E', 'F', 'G', 'H'

};

char* p1 = data;
char* p2 = p1 + 4;

p2 points to 'E'

Presenter
Presentation Notes
It’s also possible to add an integer value to a pointer. This operation produces a new memory address. That address may or may not point to anything useful, and if we start playing around with memory where we shouldn’t, we can crash the program. (The operating system should prevent us from harming any other program.) This is also the basis for many computer viruses. But when done correctly, this technique can produce very fast code.The example begins by creating an array of single-byte characters. So, when we add a constant value, 4 in this example, it’s easy to see that we are simply advancing to 4 characters beyond where we started. But what does it mean to add a value to a multi-byte data item?

POINTER ARITHMETIC, PART 2

0x00ffaa00
0x00ffaa04
0x00ffaa08
0x00ffaa0c
0x00ffaa10
0x00ffaa14
0x00ffaa18
0x00ffaa1c

p1

p2

1
2
3
4
5

7
8

6

int data[] = {
1, 2, 3, 4, 5, 6, 7, 8

};

int* p1 = data;
int* p2 = p1 + 4;

p2 points to 5

Presenter
Presentation Notes
This example creates an array of 4-byte integers and then adds 4 to the address of the first array element. There are two possible ways to interpret what this operation means: First, it could mean that we add 4 bytes to the address stored in the pointer, which would be the address of the next integer in the array as each integer is 4 bytes long. But then what would it mean if we added 3 or 5? Either would put us in the middle of the integer, which is neither meaningful nor useful. Whenever we add an integer to a pointer, the compiler automatically and silently multiples that integer by the size of the data type to which the pointer points. In this example, the compiler multiples the integer 4 by the size of an integer, which is also 4, and then adds the 16 to the address stored in p1. This operation also creates an address that advances us 4 integers beyond where we started.

POINTER ARITHMETIC, PART 3

0x00ffaa00
0x00ffaa04
0x00ffaa08
0x00ffaa0c
0x00ffaa10
0x00ffaa14
0x00ffaa18
0x00ffaa1c

p1

p2

1
2
3
4
5

7
8

6

int data[] = {
1, 2, 3, 4, 5, 6, 7, 8

};

int* p1 = data;
int* p2 = p1 + 4;

p2 – p1 is 4

Presenter
Presentation Notes
Finally, it’s also possible to take the difference between two pointers. The pointers must be related in some way for the operation to have any meaning. Typically, the pointers are related by pointing to different locations within the same data structure. Just as the compiler automatically multiplies the integer value by the size of the stored data when adding a constant to a pointer, so here it divides. That is, when we take the difference between two pointers, the compiler automatically divides the difference by the size of the data, which gives us the number of elements between the two pointers.

	Pointer Operations
	Relational Operations
	Secure Programming
	pointer Arithmetic, part 1
	Pointer Arithmetic, part 2
	Pointer Arithmetic, part 3

