
DYNAMIC DATA STRUCTURES

Uses For Pointers

Covered in “Data Structures and Algorithms”

CS 2420

Delroy A. Brinkerhoff

Presenter
Presentation Notes
Pointers are a challenging concept to master and up to now, we’ve seen little use for them. While pointers will play key roles in many of the following chapters, we end this chapter by introducing some advanced uses of pointers. The introduction is a look forward to one of the next courses in the curriculum of most computer science programs: Data Structures and Algorithms. Dynamic data structures are created and manipulated in main memory while the program runs. Pointers are at the heart of these structures.



LINKED LISTS

• Compared to an array, efficient insertions and deletions

A B C D E

stack heap

list

Data Data Data Data nullptr

Presenter
Presentation Notes
Simplified representations of dynamic data structures usually consist of two parts. The first part is called a node and is represented here by a rectangle that is itself divided into two parts. Nodes are often just instances of a class. One part of the node carries the data, which in a real program, can consist of any number of variables. The second part of a node is a pointer, often called a link, that points to another node. The second part of the representation is an arrow that graphically represents a pointer and connects two or more nodes together.
A linked list is a simple dynamic data structure that can be implemented with many variations. The pointer or link in the last node is set to nullptr to indicate that it is the end of the list. Inserting a new node into or deleting a node from a list is very fast and efficient: it only takes changing two pointer values – which amounts to two, very fast integer assignments.
Programs that use linked lists can define a pointer as an automatic variable to point the first node in the list. Alternatively, as illustrated here, a program can define a dummy node, often called a list head, that points to the first node in the list. The nullptr at the end of the list is sometimes represented by an electric circuit ground symbol.



BINARY TREE

Fast searches and insertions

Data

nullptr nullptr

Data

nullptr nullptr

Data

nullptr nullptr

Data

nullptr nullptr

Data Data

Data

Presenter
Presentation Notes
A binary tree is a data structure that allows very fast searches for stored data. A binary tree node has two pointers or links in place of the linked list’s one link. Each node defines a sub-tree, and is organized so that data values less than the data in the current node are stored in the left sub-tree, while data values greater than the current node are stored in the right sub-tree.


	Dynamic Data Structures
	Linked Lists
	Binary Tree

