ENUMERATIONS

Symbolic Integer Constants

Delroy A. Brinkerhoff

Presenter
Presentation Notes
An enumeration is a simple, modern technique for creating symbolic or named constants. Nevertheless, it is just one way of completing this task. We begin by comparing the advantages and disadvantages of three techniques for creating symbolic constants.

SYMBOLIC CONSTANTS

#define M PI 3.141592653589793
Any data type
One at a time
const double PI = 3.141592653589793;
Any data type
One at a time
enum { MAX = 100 };
One or more at a time

Only integers

Presenter
Presentation Notes
The first technique is based on macros created with the #define preprocessor directive introduced in chapter 1.
The second technique uses the “const” keyword to create a constant. Both of the first two techniques share the advantage that they can create a constant of any type, and they share the disadvantage that only one constant can be created in each statement.
Enumerations are the third technique and are able to create one or more constants in a single statement, but they are only able to create integer constants. They are, however, able to support a wide variety of options.

BASIC ENUMERATIONS

An enumeration is a set of named integers

Provide mnemonic names for “magic”’ numbers
enum tag { element list } variable list;
tag is optional; if used becomes a type specifier
variable_list is optional; if used creates one or more variables
element_list is a comma separated list of names
the first identifier is assigned the value 0
the value of one or more identifiers may be specified

unless specified, the value of an identifier is always | greater than the last

Presenter
Presentation Notes
Although C++ enumerations can be complex, their basic, common use and syntax are relatively simple. Enumerations are used primarily to create a list of named constants that replace “magic” numbers in a program. A “magic” number is just a numeric constant that is otherwise undocumented.
The required parts of the basic enumeration syntax are highlighted in red; the tag and the variable list are optional. The element list consists of one or more names or symbols that become symbolic constants in a program. There are two ways that the values associated with the names are set: by default, the first name is set to 0 and the value of the following names are each set to one more than the previous name. Programmers can also explicitly set a value for any or all of the names.

ENUM EXAMPLE |

enum commands

{

QUIT,
SEARCH,
INPUT,
IMPORT,
HELP

commands command = get_command();

switch(command)
{ caseQUIT : exit(0);
case SEARCH : search(person, index);
break;
case INPUT : input();
break;
case IMPORT : import(person, index);
break;
case HELP : help();
break;
default : cerr << "Unknown command\n";
break;

Presenter
Presentation Notes
The first example illustrates a simple enumeration on the left, which assigns values to the names using the default rule. The value of “QUIT” is set to 0, the value of “SEARCH” is set to 1, and so on until the value of “HELP” is set to 4.
The right side illustrates how the enumeration is used. An end-user might type in a command as an entire word, for example “import,” and the get_command function reads the string and converts the command into an integer, which the switch statement can quickly and easily process. It doesn’t matter what value get_command assigns to each command as long as the value is used consistently by the switch statement. Using magic numbers with each case doesn’t help a reader to understand the code. For example, suppose that the program implements a simple database. Even with that contextual understanding, having a “case 4:” in the switch doesn’t help us to understand what the case does, but a “case IMPORT:” does make sense as a database operation.

ENUM EXAMPLE 2

enum { uread = I,

uwrite = 2,
uexe = 4,
gread = §,
gwrite = 16,
gexe = 32,
oread = 64,
owrite = |28,
oexe = 256

// 0 0000 0001
// 0 0000 0010
// 0 0000 0100
// 0 0000 1000
// 0 0001 0000
// 0 0010 0000
// 0 0100 0000
// 0 1000 0000
// 1 0000 0000

Presenter
Presentation Notes
The second example illustrates how a programmer is able to assign specific values to the enumeration elements. These values represent file permissions in operating systems like Unix, Linux, and OS X. The names are often easier to remember than are the numeric values, which represent bit patterns.

ENUM EXAMPLE 3

enum { alpha = 3, beta, gamma };
alpha = 3, beta = 4,and gamma =5
enum { alpha = 3, beta = alpha + 2, gamma = alpha + beta };

alpha = 3, beta = 5,and gamma = 8

Presenter
Presentation Notes
Finally, the third example illustrates that it is possible to mix explicit value assignment with the enumeration’s implicit or default valuation. Whenever an explicit value is not assigned to an element, it is implicitly assigned a value one greater than the value of the previous element. alpha is explicitly assigned the value of 3, and by default, beta and gamma are automatically assigned 4 and 5 respectively.
It’s also possible to do simple arithmetic using the values assigned to previous elements, that is, to elements that lie to the left of the current element.

	Enumerations
	Symbolic Constants
	Basic Enumerations
	Enum Example 1
	Enum Example 2
	Enum Example 3

