STRUCTURES

Keyword: struct

Delroy A. Brinkerhoff

Presenter
Presentation Notes
Like classes, structures are an aggregate data type, which means that it is a kind of data that contains other data, called fields or members. Think of aggregate data as a basket that holds items and makes them easier to handle or move around. Or think of a zip file that contains many files.
There are also differences between structures and classes:
The “struct” keyword replaces the “class” keyword.
Data in a structure is public by default and private in a class.
The most significant difference is that programmers only use structures for pure data and reserve classes for entities that combine data and operations.

STRUCTURE SPECIFICATIONS

struct tag Structure syntax

{ The “struct” keyword
variable declarations; A structure tag or name

) ; A list of variable declarations

Each declaration is called a member or field

Creates a new type specifier (i.e.,a new
data type)

Presenter
Presentation Notes
Programmers extend C++ by creating new data types with structures. They make a structure specification that consists of:
the “struct” keyword,
a structure tag or name, and
a list of variable declarations inside a semi-colon terminated block.
Each variable declaration is called a field or member.
A structure specification is a declaration that results in a new type-specifier, but it doesn’t allocate any memory.

STRUCTURE

SPECIFICATIONS AND DEFINITIONS

SPECIFICATION

struct student

{

int 1d;
string name;
double gpa;

b g

student
student
student

student*
student*
student*

sbh
S6

DEFINITIONS

sl;

s2;

s3;

s4 new student;

new student;
new student;

Presenter
Presentation Notes
The example illustrates a structure specification named “student,” that has three fields. A structure specification does not allocate any memory, but it introduces a new data type that programmers can use to define new variables. Each variable definition allocates memory; in this example, there is enough memory to hold an integer, a string, and a double. Structure variables are also called objects.
The example defines six structure variables or objects. The first three are created on the stack, and the last three are created on the heap with new. The new operator always returns an address, so s4, s5, and s6 are pointer variables that store the address.
While all six objects have the same fields, the values stored in the fields of each object may differ from the values stored in the others.

STRUCTURE INITIALIZATIONS

PART |

student sl = { 123, "dilbert", 3.0 };
student s2 = { 456, "alice", 4.0 };
student s3;
s3 = { 789, "wally", 2.0 };
sl s2 s3
id [123 id [456 id 789

name | dilbert

| name | alice

gpa |3.0

| gra |4.0 |

name [wally

gpa [2.0

Presenter
Presentation Notes
Structures may be initialized en bloc by enclosing the field values, called initializers, in braces. The values must appear in the same order as the fields. If there are fewer initializers than there are fields, the excess fields are initialized to their zero-equivalents. It is a compile-time error to have more initializers than fields.
For decades en bloc initialization was only allowed when the variable was first defined, but the ANSI 2015 standard removed this restriction, allowing en bloc assignment as illustrated by s3. Historically, the equals operator was also required, but the ANSI 2020 standard makes it optional.

STRUCTURE INITIALIZATIONS

PART 2
DEFAULT INITIALIZATION DESIGNATED INITIALIZERS

struct student student s3 = { .id = 789,

{ .name = "wally"
int id = 789; .gpa = 2.0 };
string name = "wally";
double gpa = 2.0; student s3;

} i s3 = { .id = 789,

.name = "wally",
.gpa = 2.0 };

Presenter
Presentation Notes
The ANSI 2019 standard added support for default initializations, highlighted in yellow, to C++. The values illustrated here match other examples in this presentation. Default values are generally used to prepare an object for further operations, for example, setting a pointer field to nullptr.
Designated initializers are also a recent addition (not fully implemented in VS 2019). Each designator is formed by a dot and the name of a field. You can use designated initializers when defining a structure object or when assigning values to an existing object. You can also skip initializing some fields if desired.

MEMBER SELECTION

struct student

{

int id; sl 123 dilbert
string name; s2 456 alice
double gpar

» 3 789 wally

student sl = { 123, "dilbert", 3.0 };
student s2 = { 456, "alice", 4.0 };
student s3 = { 789, "wally", 2.0 }

14

s2.name

3.0
4.0
2.0

Presenter
Presentation Notes
Selecting the individual members or fields in a structure should also look familiar as it is based on the same dot operator that Java uses to select the instance fields and the methods in an object. The name of a structure object appears on the left side of the dot operator while the name of a member or field appears on the right.
The process of selecting a member is like accessing information in a table. Each row in the table corresponds to one structure object. In terms of a database, each row is a record (and in fact, some programming languages like Pascal call a feature equivalent to a C++ struct, a record). Each column in the table corresponds to a field in a structure or a database. Accessing a particular value corresponds to the intersection between a structure or table row and column or a field.

STRUCTURE ASSIGNMENT

student s4;
s4 = s1;

s4 sl

id 123 id 123

name | dilbert *{ name | dilbert

gpa | 3.0 gpa | 3.0

Presenter
Presentation Notes
Assigning one structure object to another, copies the original structure, bit for bit, to the second structure. Note that both structures must be the same type for the assignment to take place.

STRUCTURE FUNCTION ARGUMENTS

volid print (student temp) { . . . }
print (s2) ;

void print(student temp)
{
temp s2

id 456 id 456
name | alice | * name | alice |

gpa (4.0 | gpa (4.0 |

Presenter
Presentation Notes
Structures can also be passed as function arguments, which also results in a bitwise copy of the original structure to the function’s parameter. Although not illustrated there, structures can also be returned as the function’s return value, which is also done by copying.

	Structures
	Structure Specifications
	Structure�Specifications and Definitions
	Structure Initializations�Part 1
	Structure Initializations�Part 2
	Member Selection
	Structure Assignment
	Structure Function Arguments

