
MULTI-FILE PROGRAMS

“Real World” Program Organization

Delroy A. Brinkerhoff

Presenter
Presentation Notes
Most “real world” programs are too large to manage in a single file. While all of the programs that we study this semester are relatively small, we will nevertheless write multi-file programs so that we can learn how to deal with the challenges associated with programs that consist of multiple files.




COMPILING MULTI-FILE PROGRAMS

pre
proc

.h

.cpp

.h

temp 
file comp .obj

pre
proc.cpp temp 

file comp .obj

linker .exe

libs

Presenter
Presentation Notes
We begin by briefly reviewing how the C++ compiler system builds each of our programs. Recall that the full compilation process involves three separate programs:
the preprocessor, which processes the directives that begin with # character,
the compiler component, which translates C++ code into machine code, and
the linker, which assembles all of the separate pieces of a program into a single executable.
As illustrated here, each source code file, which ends with a .cpp extension, can include any number of header files. It’s also important to notice that when the compiler component, the middle program or bubble, translates a source code file into machine code, that it does so without the benefit of the information contained in any of the other source code files. To begin understanding how this last observation impacts the compilation process, imagine the very real scenario where one structure is specified in one source code file but is used in another.




MULTI-BYTE DATA
IN MULTI-FILE PROGRAMS

• Most data types occupy more than one byte of memory

• The compiler “knows” about the byte order of built in data types

• User-created data types (like structures) must be used consistently in all files

123
2015 6 25

Presenter
Presentation Notes
When we create a structure object, its members consist of individual variables occupying a contiguous block of memory. But memory doesn’t include explicit boundary lines that indicate where one variable or field ends and another begins.




STRUCTURES INTERPRET DATA

id year month day

123
2015 6 25

struct person
{

int id;
int year;
int month;
int day;

};
.
.
.

person p = {123, 2015, 6, 25 };

Presenter
Presentation Notes
Think of the structure specification as a template that we overlay on top of the memory. The structure provides the boundaries that separate the variables. In this example, the structure specifies that 2015 is a year, 6 is a month, and 25 is a day. But, what would happen if we tried to interpret this object with a slightly altered structure specification?




PASSING STRUCTURES BETWEEN FILES

123
2015 6 25

id year month day

123
2015 6 25

id yearmonth day

struct person
{

int id;
int year;
int month;
int day;

};

struct person
{

int id;
int month;
int day;
int year;

};

Presenter
Presentation Notes
Now imagine that we must write the person structure specification in each file that uses a person object. How easy might it be to inadvertently change the order of the members or fields, or to leave one out? The answer is, of course, that it is quite easy, especially as the number of members becomes large.
The left side of the illustration shows a structure object created with the original structure specification. The right side shows the result of interpreting this object with an altered structure specification, which has the structure members in a different order. This problem can easily happen when we pass a structure object as function argument when the function is defined in one file but is called in a different file, and when the structure specifications are not identical. This error causes the 2015 to be treated as a month, the 6 to be treated as a day, and the 25 to be treated as a year.
How can we avoid making this error?




HEADER FILES PROVIDE CONSISTENCY

struct person
{

int id;
int year;
int month;
int day;

};

#include “person.h” #include “person.h”

person.h

file1.cpp file2.cpp

Presenter
Presentation Notes
Typically, we place structure specifications, which are just declarations, in header files. It is then very easy to #include the header file into any source code file that uses that structure. In this way, every source code file “sees” or uses the same specification for every structure. In a sense, header files become the “glue” that helps bind separate source code files together so that they can form a single, executable program.



	Multi-File Programs
	Compiling Multi-File programs
	Multi-byte Data�In Multi-file Programs
	Structures Interpret Data
	Passing structures between Files
	Header Files Provide Consistency

