
INTRODUCTION TO FUNCTIONS

The Big Picture

Delroy A. Brinkerhoff

Presenter
Presentation Notes
Chapter 6 formally introduces the concepts and syntax associated with functions, which are also known as procedures, methods, subroutines, and subprograms. Keep in mind that while all methods in a Java program are tied directly to a class, C++ is a hybrid language that supports both the procedural and object-oriented programming models. Supporting two programming models means that C++ functions can be standalone or they can be tied to a class. Functions tied to a class are called member functions and are explored in chapter 9. Everything we learn here will also apply to member functions.

BASIC FUNCTION BEHAVIOR

main()

func1()

{

}

func1()

func2()

func3()

{

}

func2()
{

}

func3()
{

}

Presenter
Presentation Notes
There are two ways that we can understand code that includes a function call. First, we can think of the call as just another statement in the language. That is, we imagine the function call executing, completing some task that helps to solve a problem, and then the following statement executes in its turn. This way of thinking about functions is appropriate when we do not “own” or are not actively developing a function. For example, how did you conceptualize the behavior of either the sqrt or the pow function?
The second way of understanding a function call is to realize that when functions are compiled the resulting set of machine instructions are stored at some location in main memory. When a computer running a program encounters a function call, it saves the memory address of the machine instruction following the call, jumps to the address of the first function instruction, and begins executing the machine instructions at that location. When the computer reaches the end of a function, it retrieves the saved address, jumps back to that address, and resumes executing the machine instructions following the function call. The diagram suggests that one function can call other functions, and, in fact, there is no limit to how deeply the function calls may become. But it is important to note that functions always return in the exact opposite order in which they are called.

FUNCTIONAL DECOMPOSITION

Presenter
Presentation Notes
When software developers design programs based on the procedural programming model, they often follow a process called functional decomposition. Not all procedural software can be designed this way but most can. The idea is to start with a very high-level description of the problem and then to break it down or decompose it into smaller, more simple problems. At some point each problem becomes small enough and simple enough that we can see how to solve the problem. Each box in the diagram represents a problem that is decomposed into the smaller problems that lie below it. The software developers then write functions that correspond to each problem or to each box.
Unfortunately, there are no rules specifying how to do a decomposition or when a function or sub-problem is small enough or is simple enough. There are, however, two well-known ways of implementing or programming the functions represented by a decomposition tree.
The first way, called bottom up implementation, starts with the leaf functions at the bottom of the tree. Once one or more of the leaf functions are written, we write a simple function to test the leaves. Alternatively, top down implementation begins with the top most function and implementation proceeds downwards. Lower-level functions are simply “stubbed in” during development.

BOTTOM UP IMPLEMENTATION

void function(int x, int y, int z)
{

.

.

.
}

int max(int x, int y)
{

return (x > y) ? x : y;
}

int main()
{

function(10, 20, 30);
int a = max(100, 200);
cout << a << endl;

return 0;
}

Presenter
Presentation Notes
Functions created as a part of a bottom up implementation may be very simple, may be algorithmically complex, or may be anywhere in between. Regardless of their complexity, our goal is to make these functions complete and fully operational. We can reach this goal if the functions only operate on data passed into to the them through their parameter list. A simple, temporary function called a driver is written to test the leaf functions. As the driver is only used to test the leaf functions, it’s okay to hardcode the test data. At some point in program development, the driver functions are replaced with real functions that contribute to the problem solution.

TOP DOWN IMPLEMENTATION

• Functions lower in the tree are stubbed in

• Stub function have just enough code to allow a program to compile

void print(int x, double y)
{
}

double pow(double x, double y)
{

return 1.0;
}

Presenter
Presentation Notes
Top down implementation begins with the functions appearing at the top of the decomposition tree and creates complete, fully operational functions. Whenever a high-level function needs to call a lower-level function, the lower-level function is implemented as a stub function. A stub function contains just enough code so that it compiles. Functions that must return a value are programmed to return a constant value that is sufficient to test the calling function. The stubs are replaced with “real” functions as development works downward in the decomposition tree.

FUNCTION BENEFITS

• Functions make programs better and programming easier

• Make programs smaller

• Make large programs easier to manage

• Make team programming possible

• Make it easier to conceptualize complex problems – help to manage complexity

Presenter
Presentation Notes
Functions do many things to help make programs better and programming easier: For example
they make programs smaller by eliminating the need to duplicate code when the same operations are needed more than once in a program.
They also make it easier to manage large programs. Imagine how unwieldy it would be to load a million-line program into a text editor whenever we needed to change it.
They make it easier for multiple programmers to work on the same program at the same time: each developer can work on a function or set of functions independently of the others.
These benefits of functions notwithstanding, I believe that their the most important contribution to software development is their influence on how developers conceptualize or think about problems and therefore how they implement the software that solves those problems. It’s difficult or impossible to think about every aspect of large, complex problems at the same time. Functions allow us to break these problems down into smaller, more manageable sub-problems, which we can then assemble into complete programs that solve the larger, complete problem

	Introduction To Functions
	Basic Function behavior
	Functional Decomposition
	Bottom Up Implementation
	Top Down Implementation
	Function Benefits

