
FUNCTIONS AND VARIABLE SCOPE

Each function defines a new, unique scope

Delroy A. Brinkerhoff

Presenter
Presentation Notes
In this section, we define scope and explore the impact that it has on functions and programs.

SCOPE

• Scope is the location in a program where an identifier is visible or accessible

• Named scopes

• Global

• Class

• Local

• Block / control statement

• Scope resolution takes place from the tightest to the widest

Presenter
Presentation Notes
Scope is the locations or areas in a program where an identifier is visible or accessible. Most of the time when we consider scope, we do so in the context of a specific kind of identifier: the name of a variable.
There are potentially many distinct scopes in a C++ program, but only four of these are important enough that they are named. As with many terms that were introduced previously, it’s important that you learn both the term and the concept of scope, and that you learn and understand about each of the scopes listed here.
Global scope is the visibility of global variables, which are defined outside of any function or class. Global variables can and have caused numerous problems throughout the history of computers and are generally avoided.
Class scope restricts the visibility of variables and functions that are defined in a class. These programming elements are covered in greater depth beginning with chapter 9.
Local scope describes the visibility of local variables, which are defined inside of a function.
Block scope, often tied to control statements like loops and if-statements, is more narrow than local scope. We’ll explore an example of this later in this section.
When the compiler attempts to resolve the scope of an identifier, especially a variable, it begins with the current scope and searches the enclosing scopes as needed. We’ll also see an example of this later in this section.

GLOBAL VARIABLES AND
FUNCTION COUPLING

• Functions that only operate on parameter values can be tested independently

• Functions that share data through global variables are coupled and must be
tested together

• The level of complexity increases rapidly as each new coupled function is
added

• The complexity of coupled functions limit the size of programs

Presenter
Presentation Notes
As alluded to earlier, one of the advantages of restricting a function to use only local variables, parameters and variables defined in the function, is that the function can be tested and verified independent of any other code. When functions share global variables, they are said to be coupled. Coupled functions must be tested, debugged, and verified as a group, which is not as easy as working with individual functions. Furthermore, the complexity of a group of coupled functions increases with each coupled function added to the group. At some point, the level of complexity becomes so great that the program becomes very difficult to modify, which limits the practical size a program can attain.

VISUALIZING THE COMPLEXITY
OF COUPLED FUNCTIONS

Presenter
Presentation Notes
To better understand the impact that coupling has on a program, imagine that each circle is a coupled function. The line connecting the circles is, in some abstract way, a measure of the complexity of the group of coupled functions.

VISUALIZING THE COMPLEXITY
OF COUPLED FUNCTIONS

Presenter
Presentation Notes
Adding one new coupled function to the group triples the complexity. So, the amount of complexity in the group increases faster than the rate at which new functions are added.

VISUALIZING THE COMPLEXITY
OF COUPLED FUNCTIONS

Presenter
Presentation Notes
Adding another coupled function again increases the complexity, and again the complexity is increasing at a higher rate than the rate at which new functions are being added.

CLASS SCOPE

• One of the many advantages of the object-oriented programming model is that
it provides an intermediate scope (between global and local)

• Some functions can see or access class scope variables or data

• Class scope variables are hidden from most of the program

• Covered in greater detail later

Presenter
Presentation Notes
Global variables are used when functions must share data and, for one reason or another, it is infeasible to pass that shared data through the parameter list. One of the advantages of the object-oriented programming model is that it provides an intermediate level of scope. Class scope lies between global scope and local scope. Class scope allows some functions to share variables, while preventing most of the functions in a program from accessing those same variables. Again, more detail in chapter 9.

LOCAL VARIABLES

• Variables defined inside of a function; includes function parameters

double average(...)
{

double sum = 0;
.
.
.

}

int to_seconds(int hrs,
int mins, int secs)

{
int h = hrs * 3600;
int m = mins * 60;
return h + m + secs;

}

Presenter
Presentation Notes
Local variables are defined inside of a function and these include the function’s parameters, which are variables that are passed into a function. Recall that a variable definition requires memory to hold the data stored in the variable. In the case of local variables, this memory is allocated on the stack when the function is called and the memory is deallocated when the function ends. Formally, we say that the memory is allocated when the variable comes into scope and is deallocated when the variable goes out of scope.

BLOCK SCOPE

double average()

{

double sum = 0;

int count = 0;

while (...)

{

int data;

cin >> data;

sum += data;

count++;

}

return sum / count;

}

The scope of the for-loop loop control
variable is restricted to the for-loop

Presenter
Presentation Notes
A block is formed whenever we write an opening and a closing brace. Although it is legal to create arbitrary blocks anywhere we want in a function, we typically only create a block when we need to form a control statement.
In the example, the braces at the top and bottom of the while loop form a block, complete with a new scope. The variables sum and count are still needed when the loop is finished and so must be defined outside of the block. The variable data is only used inside of the loop and so may be defined there, giving it a narrower scope.
When the compiler encounters the variables sum and count, it does not find their definitions in the current scope, that is, the scope of the while loop. But It’s still possible to access those variables inside the loop: Failing to find a definition for either variable in the while-loop scope, the compiler searches the next higher or containing scope, namely the scope of the average function. Here it finds and uses the definitions of sum and counter.
The scope of a for-loop control variable is a special case. The for-loop defines a new scope for the loop control variable even in the absence of a block or set of braces.

SCOPE RESOLUTION

• The compiler searches for variables from
the tightest to the widest scope

int nlines = 10;

int counter = 100; // global

void function()

{

int counter = 200; // local

cout << "nlines " << nlines <<
"counter " << counter;

}

Presenter
Presentation Notes
The process of resolving scope can be likened to a little worm eating its way out of an onion (never mind how the worm got into the onion in the first place). The worm begins where it is at and eats outwards through the layers of the onion. Each layer of the onion is like a wider, enclosing scope.
We can often ignore the scope of variables that are defined at a higher scope than where we want to use them. But there is one situation where we must be aware of scope resolution. The code in the example defines two variables with the same name. It is an illegal syntax error to define two variables with the same name in the same scope, but in this example one variable is defined in global scope and another variable, with the same name, is defined in local scope, so there is no error and the program does compile.
Look at the output statement at the bottom of the function. It finds and uses the variable nlines without any trouble. But what value is printed for the variable named counter? 100 for the global counter or 200 for the local counter? Scope resolution always starts with the current, most local scope, so it is the counter variable defined in closest scope that is used and the cout statement displays 200. This rule also determines which variable is found in the more common case of nested scopes associated with blocks or control statements.

STATIC VARIABLES

double average()

{

double sum = 0;

int count = 0;

. . .

return sum / count;

}

double random()

{

static double x = 0;

x = x * (x + 1) % 2147483648L;

return x;

}

Presenter
Presentation Notes
Finally, we must understand the effect of two keywords when studying scope. The first keyword is “static.”
The variable named sum in the average function is defined as a local variable. There are two consequences of defining a variable in local scope:
First, the initialization operation takes place every time the average function called, and
second, the memory for sum is deallocated when the average function ends.
Together, these two facts suggest that any value stored in sum when the function ends, is lost.
The random function is a very simple pseudo random number generator, that is, it produces a sequence of numbers that pass some statistical tests of randomness. The function will produce the same sequence of numbers whenever the enclosing program is run, which means that the numbers aren’t very random at all. The variable x is also defined and initialized in local scope. If x is initialized to 0 every time that the function is called, it will produce an even worse sequence of numbers: every number will be the same.
Each time that the function is called, it updates the value stored in x. The random function will only work if the initialization operation only takes place once and if the value stored in x is not “forgotten” when the random function ends. This is exactly what the “static” keyword does. Although the variable x retains its local scope, that is, it’s only visible and accessible from within the random function, its memory is not allocated on the stack when the function is called nor deallocated when the function ends. Memory for static variables is allocated when the program is loaded into memory for execution and is not deallocated until the entire program ends. This allows static variables to retain or remember their values between function calls.

file1.cpp

int counter = 100;

void increment()

{

counter++;

}

extern int counter;

int report()

{

return counter;

}

file2.cpp

EXTERN VARIABLES

Presenter
Presentation Notes
The second keyword, “exterm,” is much less important but included here for completeness. The extern keyword is only used in connection with global variables, which I’ve already suggested that we should avoid. If we define a global variable in one file but use it in another file, we must provide a declaration in the second or using file. We do that as illustrated with the extern keyword.

	Functions and Variable Scope
	Scope
	Global Variables AND�Function coupling
	Visualizing The Complexity�of Coupled Functions
	Visualizing The Complexity�of Coupled Functions
	Visualizing The Complexity�of Coupled Functions
	Class Scope
	Local Variables
	Block Scope
	Scope Resolution
	static Variables
	extern Variables

