FUNCTION RETURN

Part |

Delroy A. Brinkerhoff


Presenter
Presentation Notes
We can broadly divide functions into two categories: those that do not return a value (that is, they have a return type of void) and those that do return a value. This section describes how the return operator is used in these two kinds of functions.



VOID FUNCTIONS
DO NOT RETURN A VALUE

void functionl () void function2 ()

{ {
it (. . L)

return;



Presenter
Presentation Notes
If a function has a return type of void, a so called void function, the return operator is optional. If there is no return statement in the function, it returns automatically at the bottom where the body ends.
A function must have exactly one entry point – the beginning of the function. But a function may have more than one exit point. Each exit point is specified by a return statement. That means that it is possible to have any number of return statements in a function, often enclosed in an if-statement. Notice that when a return statement appears inside of a void function that no value appears between the “return” operator and the terminating semicolon.



FUNCTIONS WITH A NON-VOID
RETURN TYPE

int function3 () return 10;
{ return p;
it (...) return a + b;
return -1; return sqgrt(2);

return P * R / (1 - pow(l + R, -N));

return 10;


Presenter
Presentation Notes
Whenever a function returns a value, it must have at least one return statement. Indeed, it is the return operator that specifies the value that a function returns. It’s common to have only a single return statement at the end of the function, but it’s possible to have multiple return statements and they may return different values.
The value following the return operator is any legal expression: a constant, a variable, a simple arithmetic expression, the value returned by another function call, or the result of a complex expression.



	Function Return
	void functions�do not return a value
	Functions With a Non-Void Return type

