
PASS BY POINTER

Complex but very useful

Delroy A. Brinkerhoff

Presenter
Presentation Notes
Pass by pointer is more challenging to use and to understand than is pass by value. Nevertheless, pass by pointer is very useful and there are some important operations that cannot be solved by any other passing technique. Please study this explanation very closely.

C++ MEMORY

SIMPLE DATA

void func(int* p);

int main()
{

int a = 5; // step 1

func(&a); // step 2
}

void func(int* p)
{

*p = *p + 1; // step 3
} // step 4

5 5 6 6

0x12 0x12

a a a a

pp

0x12 0x12 0x12 0x12

0x34 0x34

step 1
define a

step 2
call func

step 3
run func

step 4
return

Time

0x12

*p *p

Presenter
Presentation Notes
As in the previous section, this explanation is based on an integer argument and parameter, but pass by pointer will behave the same for all simple data types like int, char, double, etc.As before, step 1 defines and initializes a variable named a; in the illustration, the definition allocates memory to hold the variable and stores the value 5 in that memory. The address of variable a is illustrated with the arbitrary value of 0x12 – recall that the “0x” denotes an integer constant in hexadecimal or base 16, which is often used for pointers and addresses.Step 2 again calls a function but this time it passes the address of variable a to the function. The ampersand is the address of operator, so &a is an expression that evaluates to the address of a. This time the function parameter p is a pointer variable. p is still a variable, so memory to hold the contents of p is allocated, but it is the address of a that is stored in p. p is a distinct variable and so it has a distinct address: 0x34 in this illustration.Each time we use variable p, we must dereference it. Recall that in this context, the asterisk is the indirection or dereference operator. *p forms an expression that evaluates to the contents of variable a, that is 5 in this example. So, the function increments 5 and stores the result back into variable a, because p points to a.When the function ends, p is deallocated but the 5 originally stored in a is now incremented to 6.

STRUCTURED DATA

struct part
{ char type;

int id;
};

void func(part* p);

int main()
{

part a = { 'd', 10 };
func(&a);

}

void func(part* p)
{

p->id = 1000;
}

‘d’
10

‘d’
10

‘d’
1000

‘d’
1000

0x12 0x12

a a a a

pp

0x12 0x12 0x12 0x12

0x34 0x34

step 1
define a

step 2
call func

step 3
run func

step 4
return

Time

0x12

*p *p

Presenter
Presentation Notes
Again, we turn to a structure to see how pass by pointer behaves with more complex data, and again, the effects illustrated here are the same with instances of a class.The code defines a structure variable named a and initializes its fields. The definition causes memory to be allocated as shown.Next, a function is called but the function argument is an expression that evaluates to the address of the structure variable or structure object a. It is the address of a that is passed to the function parameter p. The variable p is defined as a pointer and the address of a is passed to and stored in p.p must be dereferenced each time it is used; furthermore, p points to a structure and one of the fields in the structure must be selected. C++ combines both the dereference and the selection operations into the single arrow operator. The function dereferences p, which means that it is now working with a, selects the id field, and changes the id field to 1000. Notice that it is the structure object a that is changed.Finally, the function ends and variable p is deallocated, but variable a is permanently changed.The crucial behavior to understand is that when data are passed by pointer, that the function receives the address of the original data, which allows the function to change the original data. Consequently, data passed by pointer flows in either or both directions: from the function call into the function, from the function back to the caller, or both. Pass by pointer is an input/output mechanism.

	Pass By Pointer
	Simple Data
	Structured Data

