
DEFAULT ARGUMENTS

Not supported by Java

Delroy A. Brinkerhoff

Presenter
Presentation Notes
Default arguments are useful in limited situations, but they are very useful in those situations. They represent one of two useful C++ features that were not included in Java, so you may not be familiar with them.




DEFAULT ARGUMENTS

• Balance flexibility and ease of use

• The ignore function

• cin.ignore();

• cin.ignore(10);

• cin.ignore(10, ‘:’);

Presenter
Presentation Notes
Default arguments help designers of frequently reused code to balance flexibility with ease of use. Some of the library functions that we have used in previous chapters have taken advantage of default arguments. For example, the ignore function really has two parameters. The first parameter is the number of characters to skip or ignore. The default value is one, which is the most common value and therefore an excellent choice for the default. The second parameter is the character that when detected stops the skipping or ignoring. The default value is the end of file character, which again is a good choice for the default value. The default characters make the ignore function easy to use in the most common situations but allows the function to remain flexible for less common situations.




DEFAULT ARGUMENTS
VS. OVERLOADED FUNCTIONS

void window(int width, int height){...}
void window(int width, int height, int x, int y, int color){...}

void window(int width, int height, int x = 0, int y = 0, int color = WHITE){...}

window(100, 200);
window(100, 200, 50);
window(100, 200, 50, 75);
window(100, 200, 50, 75, BLUE);

Presenter
Presentation Notes
Overloaded functions are another solution to the flexibility versus ease of use problem. Java takes this approach and its API is replete with examples.
 
For example, imagine that a function or method creates a window. Parameters allow the caller to specify the width, the height, the x and y location, and the color of the window. This makes the function or method flexible but requires the caller to provide five bits of information to create a window – even if a simple window is all that is needed.
 
We can provide at least two versions of the window function. The first version is simple and only requires a minimal amount of information. A second version allows the caller to provide more information when a more precisely specified window is desired. Although there are ways of implementing multiple functions like these without duplicating a great deal of code, default arguments provide a very compact, elegant solution.
 
Default values allows the caller to specify a minimum amount of information and provides the rest of the information based on common, reasonable values. Defining functions this way allows the caller to invoke the function either simply or precisely.




DEFAULT ARGUMENTS: RULE 1

• No argument without a default may be defined to the right of an argument 
with a default.

void function(int a, int b = 1, int c = 2); // okay

void function(int a, int b = 1, int c); // error

Presenter
Presentation Notes
There are four rules that govern how default arguments are specified and used. I think that stating the rules is more complicated than just studying examples, but both approaches are taken for each rule.
 
The first rule is that, “No argument without a default may be defined to the right of an argument with a default.” This just means that, working from left to right, once you specify a default value for an argument, then the rest of the arguments to the right must also have default values.




DEFAULT ARGUMENTS: RULE 2

• When calling a function with default arguments, an argument may not be 
specified to the right of an argument whose default is accepted.

function(50); // okay

function(60, 70); // okay

function(60, 70, 80); // okay

function(60, , 80); // error

Presenter
Presentation Notes
The second rule states that, “When calling a function with default arguments, an argument may not be specified to the right of an argument whose default is accepted.” The rule means, again, working from left to right, that once you accept a default argument, you accept the defaults for the remaining arguments. As illustrated here, you can’t accept a default in the middle of the list and then specify values for the remaining arguments.




DEFAULT ARGUMENTS: RULE 3

• If the function definition and the function declaration (i.e., the prototype) are 
not the same, then the default values appear in function prototypes.

• Function Prototype

void function(int a, int b = 1, int c = 2);

• Function Definition

void function(int a, int b, int c) { . . . }

Presenter
Presentation Notes
The third rule is, “If the function definition and the function declaration (i.e., the prototype) are not the same, then the default values appear in function prototype.” Beginning with chapter 4, we see that it is common to place function prototypes in header files and the function definitions in source code or .cpp files. When we do this, the default arguments go in the prototypes in the header file.




DEFAULT ARGUMENTS: RULE 4
NO CONFLICT

• If a function with default arguments is also overloaded, all possible ways that 
the function can be called, with and without default values, must be distinct 
from any and all overloaded versions.

void function(); // function 1
void function(int a, int b = 1, int c = 2); // function 2

function(); // function 1
function(10); // function 2
function(10, 20); // function 2
function(10, 20, 30); // function 2

Presenter
Presentation Notes
The fourth and final rule governs functions that are both overloaded and have default arguments. “If a function with default arguments is also overloaded, all possible ways that the function can be called, with and without default values, must be distinct from any and all overloaded versions.”
 
In this example, there are two functions. Function 1 has no arguments and function 2 can have one to three arguments. That means that any valid argument list uniquely matches only one of the functions and the compiler can tell which function to invoke.




DEFAULT ARGUMENTS: RULE 4
AMBIGUOUS FUNCTION CALLS

void function(int a); // function 1
void function(int a, int b = 1, int c = 2); // function 2

function(10); // which one??
function(10, 20); // function 2
function(10, 20, 30); // function 2

Presenter
Presentation Notes
But a single modification to the example is all that it takes to break the code. Here we change the first function so that it requires one argument. Now, when we call the overloaded function with one argument, it can match function 1, or, if we accept the default values for the second and third arguments, it can also match function 2. The compiler is unable to deal with this ambiguity and it stops with a fatal compile-time error.



	Default Arguments
	Default Arguments
	Default Arguments�vs. Overloaded Functions
	Default Arguments: Rule 1
	Default Arguments: Rule 2
	Default Arguments: Rule 3
	Default Arguments: Rule 4�No Conflict
	Default Arguments: Rule 4�Ambiguous Function calls

