FUNCTIONS AND THE CONST
KEYWORD

Preventing Data Change:
const Arguments

const Return Values

Delroy A. Brinkerhoff

Presenter
Presentation Notes
The “const” keyword prevents data passed into or returned from functions from being changed. It can apply both to a function’s arguments and its return values.

INPUT ONLY VS. INOUT

Pass by Value Function Pass by Reference

Presenter
Presentation Notes
C++ provides three different argument passing mechanisms. Pass-by-value only allows passing data into a function, making it an input-only mechanism. Both pass-by-reference and pass-by-pointer enable data to be passed in and back out through an argument, making them INOUT mechanisms. Is there a way to make pass-by-reference and pass-by-pointer INPUT-only mechanisms? And if so, why might we want to do this?

PASS BY VALUE

Pass by value (aka pass by copy) only allows data input

Input only is appropriate for some functions
table (payment, principal, R, N);

void table(double payment, double balance, double R, int N)
{

for (int 1 = 1; 1 <= N; i++)
{

balance -= (payment - to interest);

Presenter
Presentation Notes
Pass-by-value is an INPUT-only passing technique. So, functions can change the input data, but the change ends with the function. One of the chapter 3 example programs, mortgage.cpp, printed an amortization table showing the current loan balance after each payment. Now suppose that we want to make the code that prints the table into a separate function. The illustration shows part of the function, but you can see the complete version in the text.
The function needs the amount of each payment, the principal, the periodic interest rate, and the number of periods or payments. The program passes these values as arguments in the function call. Three of these values play the same roles in the function as in the main program, and the function retains the original names. But the “principal” is the amount borrowed, which never changes, so it becomes the “balance” in the function. The “balance” is the amount currently owed and changes after each payment. The function call initially sets the balance equal to the principal, but the two values diverge after the first iteration of the loop, demonstrating one of the advantages of pass-by-value: changes made in the function do not impact data defined in the scope of the function call.

FAST & EFFICIENT DATA PASSING

REFERENCE POINTER
a a__ﬁﬁl__*p

P Ox12
Ox12

Ox12

Presenter
Presentation Notes
Both pass-by-reference and pass-by-pointer create an alias or a second name for a data item, but they do so differently. Pass-by-reference doesn’t really pass anything into a function; it just makes both the argument and the parameter refer to the same data – there is only one data item, and it has two names while the function is running. Pass-by-pointer passes the address of the argument data to a pointer parameter variable. The single data item is accessed indirectly through the pointer.
In both passing situations, the function uses the data item defined in the function caller’s scope. Implementing argument passing these ways gives us two generally beneficial features: Both pass-by-reference and pass-by-value are INOUT passing mechanisms, and both are very fast and efficient. The question is, can we keep the speed but make these passing mechanisms INPUT only?

PASS BY REFERENCE

struct ReallyBig void function (const ReallyBigé& big)

{ {
char code; double tax big.cost * 0.077;

double cost; //big.code = 'Z';

b s

Presenter
Presentation Notes
For small data items, pass-by-value is usually fast enough. So, we begin by assuming a huge structure where the ellipses suggest many additional fields. We can get the efficiency of pass-by-reference but enforce INPUT only by adding the keyword “const.” We can use the fields in the structure as expressions (that is, on the right side of an assignment operator) and print them out. But any attempt to change any of the fields becomes a compile-time error.

PASS BY POINTER

ReallyBilg widget; void functionl (const ReallyBig* p);

voilid functionZ (ReallyBig* const p);

functionl (&widget) ; void function3 (const ReallyBig* const p);
function2 (&widget) ; D widget
function3 (&widget) ;
-
pointer data

parameter argument

Presenter
Presentation Notes
We can do the same thing with pass-by-pointer, but pass-by-pointer involves two variables, making using “const” a bit more complicated. Pass-by-pointer requires a pointer variable, defined in the function, and the original data, defined in the function caller. Either or both can be made constant.
The “const” keyword applies to whatever value is immediately to its right. So, in the first example, “const” applies to “ReallyBig*,” which is the data. So, function1 may change what p points to, but it may not change any of the data - it cannot change any of the fields in the widget structure.
In the second example, “const” is placed just before the variable p. So function2 may change the widget data that p points to, but it may not change the address saved in p - p cannot point to a different structure.
In the third example, both the parameter and the data are “const,” so function3 cannot change the pointer or the data to which it points.

RETURNING A CONST REFERENCE

const ReallyBigé& functionl () const ReallyBig& rl = functionl ();
{
static ReallyBig widget = //rl.cost = 29.95; // error
{ 'x', 19.95, ... };

return widget;

Presenter
Presentation Notes
It’s also possible to return data from a function by-reference or by-pointer. However, when returning the data defined inside a function, either by-reference or by-pointer, care must be taken so that the program doesn’t deallocate the data when the function returns. The text presented three different solutions to this allocation problem previously. One solution, based on the “static” keyword, is used for the remaining examples.
The function returns a constant reference that refers to a local variable. In this case, the data referred to by variable r1 is also constant and cannot be changed; attempting to change the data results in a compile-time error. Even without the “const” keyword, reference variables are somewhat constant. Specifically, reference variables must be initialized when they are defined, and they may not refer to any other data following their initialization. So, changing the data that r1 refers to is never possible.

RETURNING CONSTANT DATA

const ReallyBig* functionl () const ReallyBig* pl = functionl ()
{
static ReallyBig widget = //pl->cost = 29.95; // error
{ 'x', 19.95, ... }; pl = new ReallyBig; // okay

return &widget;

Presenter
Presentation Notes
Just as with pointer arguments, the “const” keyword can appear in two locations when returning pointers. In this example, the “const” keyword applies to the returned data. Any attempt to change the value of the data results in a compile-time error. However, it is quite possible to change the block of data to which the pointer variable points.

RETURNING A CONSTANT POINTER

ReallyBig* const function?2 () ReallyBig* const p2 =
{
static ReallyBig widget = p2->cost = 29.95;
{ '"x', 19.95, ... }; //p2 = new ReallyBig;

return &widget;

function?2 () ;

// okay

// error

Presenter
Presentation Notes
In the final example, “const” applies to the returned address. So, it is possible to change the data, but not the address or pointer that the function returns.

	Functions and the const keyword
	Input Only vs. INOUT
	Pass By Value
	Fast & Efficient Data Passing
	Pass By Reference
	Pass By Pointer
	Returning a const Reference
	Returning Constant Data
	Returning A Constant Pointer

