
RECURSION

Calling a function again before it ends

Delroy A. Brinkerhoff

Presenter
Presentation Notes
Recursion is the situation where a function is called while it is still running. The only known solutions for some problems are recursive, and even when there are non-recursive solutions, the recursive solutions are often more elegant.




DIRECT RECURSION

• A function calls itself

void f()
{

. . .
f();
. . .

}

Presenter
Presentation Notes
There are two main kinds of recursion. The first is “direct recursion,” where a function calls itself. This is the only kind of recursion we will explore this semester.




INDIRECT RECURSION

• A chain of function calls that results in a function being called before the first 
call returns

void a()
{

. . .
b();
. . .

}

void b()
{

. . .
c();
. . .

}

void c()
{

. . .
d();
. . .

}

void d()
{

. . .
a();
. . .

}

Presenter
Presentation Notes
The second kind of recursion is “indirect recursion.” Indirect recursion arises when a sequence of function calls results in a function being called again while it is still running. The sequence of calls may be of any length and may recurs any number of times – limited only by the amount of available memory.




REQUIREMENTS FOR RECURSION

• One or more paths through the function where recursion takes place

• One or more paths through the function where recursion does not take place. 
These are the base cases

• may be implicit for simple functions

• easy to calculate (e.g., a constant value)

• A value, typically an argument, that changes from one function call to the next

Presenter
Presentation Notes
Correctly formed recursive functions have three requirements:
First, there must be at least one execution path through the function where recursion can take place.
Second, there must be at least one execution path through the function where recursion does not take place. This path might be implicit – for example, an if-statement where the true branch causes recursion but where there isn’t an “else” part – or it might be trivial to calculate, such as a constant value. The simple, constant value is often called the base case.
And last, at least one value, typically a function argument, that changes in some controlled way such that the function can tell when the recursion is finished. The function chooses between the recursive and the non-recursive paths based on this changing value.




RECURSION EXAMPLE:
THE FACTORIAL FUNCTION

0! = 1 (base case)

n! = 1 * 2 * 3 * . . . * (n - 1) * n

8! = 1 * 2 * 3 * 4 * 5 * 6 * 7 * 8

𝑓𝑓 𝑛𝑛 = �
1,𝑛𝑛 = 0 (𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)
𝑛𝑛 𝑛𝑛 − 1 ,𝑛𝑛 > 0

Presenter
Presentation Notes
The factorial function is one of the common examples of recursion. There are a couple of ways to describe the requirements for a recursive function. The first is as a set of rules. The rule is that when n is 0, the function should return 1; this is the non-recursive path or the base case. When n is greater than 1, then the function must return the product of the numbers from 1 to n; this is the recursive path. Functional notation is also commonly used to describe recursive functions. The two notations are really equivalent.
For n = 8, the factorial function produces this extended product.




THE C++ FACTORIAL FUNCTION

int fact(int n)
{

if (n > 0)
return n * fact(n - 1); // recursion

else
return 1; // non-recursion

// (base case)
}

Presenter
Presentation Notes
The factorial rules or function can be converted into the C++ factorial function shown here. Recursion takes place when “n” is greater than 0. Notice also that when the factorial function is called recursively, that the value or the argument “n” is decreased by 1, which was the last rule for implementing recursion. When “n” becomes 0, the non-recursive or base case path runs, which ends the recursive calls.




HOW RECURSION WORKS

.

.

.

n = 8

n = 7

n = 6

n = 1

n = 0
return addr

return addr

return addr

return addr

return addr

Presenter
Presentation Notes
Recursion is based on automatic variables whose memory is allocated on the stack. Whenever a function or method is called in program written in a modern programming language, the system pushes a data structure called a “stack frame” on the runtime stack. A stack frame contains memory to hold the arguments passed into the function and any variables defined in the function.
So, when a function is called recursively, a new stack frame is pushed on the runtime stack to represent the new function call, while the stack frame from the previous call remains in place. In this example, there is a frame for each recursive call to the factorial function. That means that there are nine different variables named “n” and each has a unique value. The return address, that is, the address where control returns when the function ends, is also stored in the stack frame. Each frame is popped off the stack and discarded when the function returns from the call.



	Recursion
	Direct Recursion
	Indirect Recursion
	Requirements for Recursion
	Recursion Example:�The Factorial Function
	The C++ Factorial Function
	How Recursion Works

