
VISUALIZING ARRAYS

Arrays May Have Different Shapes

Delroy A. Brinkerhoff

Presenter
Presentation Notes
It is generally easier to grasp the basic concepts of arrays if we view them abstractly as a picture. This is especially true once we realize that arrays may come in different shapes.

ONE-DIMENSIONAL ARRAY

Looks like a list

int test[10];

Legal index values: 0 - 9

41
97
91
89
89
100
76
83
91
79

test[0]

test[5]

0
1
2
3
4
5
6
7
8
9

Presenter
Presentation Notes
A one-dimensional array looks very much like a list. That is, it forms a sequence or list of values or elements. The array named "test" is defined to contain a sequence or list of 10 integers. The size of the array is the number of rows in the list. Notice that the legal index values began at zero and go to one less than the size of the array.

TWO-DIMENSIONAL ARRAY

Looks like a table

float test_score[10][4];

Sizes are stated individually: row, column

Each dimension must be in its own brackets
(can’t have a comma-separated list)

Legal index values: 0-9 and 0-3

41
97
91
89
89
100
76
83
91
79

0
1
2
3
4
5
6
7
8
9

 0 1 2 3

test_score[0][0]

test_score[2][3]
test_score[3][2]

test_score[9][3]

Columns

Presenter
Presentation Notes
A two-dimensional array looks like a table, that is, it has rows and columns. When we define a two-dimensional array we must specify two separate sizes. The first size is the maximum number of rows in the table, while a second size is the maximum number of columns. Also notice that each size is enclosed in a separate pair of square brackets (some languages allow a comma separated list of sizes enclosed in a single pair of square brackets, but C++ does not support this notation).

THREE-DIMENSIONAL
ARRAY

Looks like a box

double class_score[5][5][5];

Sizes are stated individually: row, column, layer

Legal index values: 0-4, 0-4, 0-4

class_score[0][2][3]

class_score[0][0][0]

class_score[2][4][1]

class_score[4][2][0]

Columns

Layers

Presenter
Presentation Notes
A three-dimensional array looks like a box. A three-dimensional array requires three separate sizes, each in its own pair of square brackets. The first size is the rows, the second size the number of columns, and the third size the number of layers or the depth of the box. Notice that in this example all three dimensions are the same size; furthermore, all of the example element accesses lie on the surface of the box. Both of these features are simply due to my lack of illustrative capability. In general, each dimension may be a different size, and elements inside the box may also be accessed and used. There is no limit to the number of dimensions that an array may have, but in practice one- and two-dimensional arrays are generally sufficient (unless you're working in a very specialized area of computer science or engineering).

	Visualizing Arrays
	One-Dimensional Array
	Two-Dimensional Array
	Three-Dimensional Array

