
CREATING ARRAYS

Two Ways To Make An Array

Delroy A. Brinkerhoff

Presenter Notes
Presentation Notes
Java only gives us one way of creating an array and that way requires using the "new" operator. On the other hand, C++ supports two ways of creating an array. With this flexibility comes an increase in the number of operators or symbols that appear in the creation statements.




AUTOMATIC ARRAYS

• int scores1[50];

• Memory allocated deallocated with scope

. . .

stack

scores1

Presenter Notes
Presentation Notes
First, we can create an array is an automatic variable. Recall from chapter 1 that the memory for automatic variables is automatically allocated when the variable comes into scope and is automatically deallocated when the variable leaves scope. All of the memory used for an automatic variable is allocated on the runtime stack. The name of the variable represents the address or location of the array in memory; specifically, the name of an array is the address of the first element of the array.




DYNAMIC ARRAYS

• int* scores2 = new int[50];

• Memory allocated and deallocated with new and delete

scores2
. . .

stack heap

Presenter Notes
Presentation Notes
Second, we can create an array as a dynamic variable. Recall from chapter 4 that the memory for dynamic variables is allocated on the heap with the new operator; this memory remains allocated to the program until it is explicitly deallocated with the delete operator. Dynamic variables typically consist of two parts: the first part is the dynamically allocated memory that contains the actual data (in the case of an array, the allocated memory contains the array elements); the second part is a pointer variable that stores the address of the dynamically allocated memory. The pointer is often (but not always) an automatic variable allocated on the stack.




ARRAY SIZES

• Once created, the size of an array is fixed (unchanging)

• The size of an automatic array must be specified with a compile time constant

• Number: 100

• Macro: #define SIZE 100

• Enumeration: enum { SIZE = 100 };

• Declared constant: const int SIZE = 100;

• The size of a dynamic array may be specified with an initialized variable

Presenter Notes
Presentation Notes
Once an array has been created, its size is fixed and unchangeable. When we create an automatic array (i.e., when we create an array as an automatic variable), the size must be specified by what is called a "compile time constant." A compile time constant simply means that the value used to specify the size of an array must be fixed and unchangeable by the time that the compiler component (which is the middle of the three parts of the full compiler system) begins to generate code. There are four different ways of specifying a compile time constant:
as a numeric constant
as #define macro
with an enumeration
and lastly by using the "const" keyword.
 
The size of a dynamic array is, well, more dynamic. The size may be specified as a compile time constant as described above, or it may be specified by a variable. This implies that we can wait until the program is running, perform some calculation to determine how large of an array is needed, or allow the user to input a size for the array, and then create an array whose size matches our needs.



	Creating Arrays
	Automatic Arrays
	Dynamic Arrays
	Array Sizes

