
ARRAYS AND FUNCTIONS

Array Arguments and Return Values

Delroy A. Brinkerhoff

Presenter
Presentation Notes
When used in conjunction with functions, arrays present their own set of unique challenges and require some unexpected notation. We first look at the problem of passing array arguments into functions and conclude with returning arrays with the "return" keyword.

ONE-DIMENSIONAL ARRAY ARGUMENT

• Function Definition: int test[10];

• Function Call: func1(test);

• Possible arguments:

• void func1(int* student)

• void func1(int student[])

• void func1(int student[10])

• Parameter access in the function: student[7]

Presenter
Presentation Notes
A one-dimensional array may be passed as a function argument in one of three ways. The first way, as a pointer, is perhaps the most surprising, but remember that the name of an array is the address of the array (specifically it is the address of the first element in the array). Since we're passing the address of the array, it's appropriate to define the function parameter is a pointer variable. It's also possible to use a pair of empty square brackets to indicate that the parameter is an array (but unlike Java, which allows programmers to place the brackets either at the end of the datatype or at the end of the variable name, C++ only allows the brackets at the end of the variable name). Finally, it is also possible to specify the size of the array in the argument list, but this practice is much less common as it restricts the size of the array that may be passed into the function. However, the array is passed, normal array indexing is used throughout the body of the function.

TWO-DIMENSIONAL ARRAY ARGUMENT

• Function Definition: float test_score[10][4];

• Function Call: func2(test_score);

• Possible arguments:

• void func2(float scores[][4])

• void func2(float scores[10][4])

• Parameter access in the function: scores[6][2]

Presenter
Presentation Notes
Our notational choices become more limited when we move from one- to two-dimensional arrays. We completely lose the option of using pointer notation, and while we can omit the size of the first dimension, we must always specify the size of the second and subsequent array dimensions. Again, standard array index notation is used throughout the body of the function.

THREE-DIMENSIONAL ARRAY
ARGUMENT

• Function Definition: double class_score[5][5][5];

• Function Call: func3(class_score);

• Possible arguments:

• void func3(double scores[][5][5])

• void func3(double scores[5][5][5])

• Parameter access in the function: scores[1][2][3]

Presenter
Presentation Notes
Three-dimensional and higher arrays are really the same as two-dimensional arrays, just with more dimensions. That is, we cannot use the pointer notation, we can only omit the size of the first dimension, the sizes of all subsequent dimensions must be explicitly stated, and standard array index notation is used throughout the body of the function. (The reason that the first dimension size may be omitted while the others are required is covered in the textbook for those who are interested.)

RETURNING A ONE-DIMENSIONAL
ARRAY

int* get_scores()
{

int scores[100];
. . .

return scores;
}

int* get_scores()
{

static int scores[100];
. . .

return scores;
}

int* get_scores()
{

int* scores = new int[100];
. . .

return scores;
}

int* get_scores(int* scores)
{

. . .
return scores;

}

Presenter
Presentation Notes
The notation needed to return an array from a function is quite straightforward, but conceptually there is a major pitfall awaiting us. Focus your attention on the function in the upper left-hand corner. The first thing we see is that the array's return type is a pointer. The function goes on to define a local integer array named "scores" and, after some unspecified operations, returns that array. The return statement and the return type match because the name of an array is a pointer. But do you see anything wrong? What about the scope of "scores?" “scores” is a local and an automatic array, which means that when the function returns, the memory for scores is automatically deallocated. The problem is that we are returning an address that becomes invalid with the return itself. Syntactically, the function is correct, which means that it will compile and run. However, what happens when it runs depends on many factors beyond of our control. Needless to say, this is a challenging bug to locate, but fortunately when it is located, it is relatively easy to correct. The remaining three functions demonstrate three different ways of correcting the error. The first solution uses the "static" keyword, which makes the array static rather than automatic. The memory for static variables is allocated when the program is loaded into memory and is not deallocated until the program ends. That means that the address returned by the function remains valid as long as the program is still running. The next solution relies on the new operator to dynamically allocate memory, and that memory remains allocated until it is explicitly deallocated with the “delete” operator. Again, this means that the memory is not automatically deallocated when the function returns and so the address remains valid. The last solution is in some sense the strangest. Here, the array is created in a different scope, likely the scope from which the function is called, and passed into the function as an argument. The function can use the array, perhaps storing data in it, and then returns the array as the functional return value with the "return" keyword. This function is clearly implementing a pass by pointer, which allows information both to be passed into and out of the function through the argument list, so the return is not, strictly speaking, necessary. But we will see in the next chapter that this pattern is sometimes convenient nevertheless.

	Arrays And Functions
	One-Dimensional Array Argument
	two-Dimensional Array Argument
	three-Dimensional Array Argument
	Returning a one-dimensional array

