
INDEX ORDER

Does the order matter?

Delroy A. Brinkerhoff

Presenter
Presentation Notes
We now have enough understanding of arrays and the syntax surrounding their use that we can return to a concept introduce earlier in the chapter: the order in which indexes are used to access array elements. Focusing our attention on two-dimensional arrays, we ask ourselves the question, “Does it matter in which order the subscripts are used to access array elements?”

ARRAY DEFINITION AND
MEMORY ALLOCATION

int array[2][3];

int array[3][2];

rows × cols = cols × rows

array 0
1
2
3
4
5

Presenter
Presentation Notes
The order of the indexes or subscripts in the definition does not impact the amount of memory that the compiler must allocate. But it does impact where the individual elements are stored within the allocated memory. In many kinds of programs, if the programmer consistently uses the same index order throughout the program, then the order does not matter.

REASONS FOR ADOPTING
[ROWS][COLS]

• Accepted practice

• Similar usage to math: x1,2

• Matches Java

• C++ sometimes represents text as an array of strings

• Printing arrays to the console

• Initializing arrays: int array[3][4] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 };

• Extracting rows from an array: array[2];

1 2 3 4

5 6 7 8

9 10 11 12

Presenter
Presentation Notes
Nevertheless, there are many reasons to adopt a standard order of rows for the first index or subscript and columns for the second. Here are few that I believe are most compelling:Rows and then columns is by far the most common, accepted practice among programmers, which means that if you follow this practice, your code will be easier for other programmers to read and to understand.Mathematics also uses the concept of indexes or subscripts when dealing with matrices or arrays, and the first subscript is always the rows and the second is always the columns. While not all programmers will work with matrices, some, especially graphics programmers, will, and the resulting code will be easier to understand and to debug if they avoid switching the order of the subscripts.In Java, a two-dimensional array is an array of arrays. This means that in a Java program, you cannot reverse the index order in most cases. Using a consistent index order will make switching between languages or converting programs from one language to the other much easier if the same index order is used.Similarly, C++ sometimes represents textual data as an array of strings, where each string is an array of characters. Individual characters are accessed using two indexes and the rows must be the first index and the columns the second.When printing output to the screen, it’s very difficult to move the cursor backwards (in English, that’s from right to left) or upwards. That means that data must be printed left to right and top to bottom. This naturally follows a rows-first, columns-second approach – the first row of elements is printed left to right and then next row is printed, and so on.When we use a static or compile-time list to initialize an array, the compiler reads the list from left to right and fills the array by rows. And we cannot change that behavior.Finally, it is possible to extract a single row from a two-dimensional array by using just one index. But it is not possible to extract a single column.

PROGRAMMING EXAMPLE

void print_row(int* row, int size)
{

for (int i = 0; i < size; i++)
cout << row[i] << endl;

}

int main()
{

int array[3][4] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 };
print_row(array[2], sizeof(array[2]) / sizeof(int));
return 0;

}

1 2 3 4

5 6 7 8

9 10 11 12

Presenter
Presentation Notes
The partial program illustrated here demonstrates the last two points. First, we define and initialize a two-dimensional array. The values in the initialization list fill the array beginning with the first value going into the top, left-most array element. When the first row is filled, the values are then directed to the second row, and then the third or bottom row.Next, notice that the function takes an integer pointer. We saw in the previous section that this one way of defining a one-dimensional array. The array printed in the function only has one dimension or index. When the function is called, a single row is extracted from the two-dimensional array and passed as a parameter to the function. There is no C++ syntax that allows us to extract a single column from the array.

CHARACTER ACCESS:
ARRAY OF STRINGS

• Command line arguments

• Come from the operating system

• Are an array of strings

• Individual characters are accessed with two
indexes: [row][col]

p r

a l

d i l b e . t x t

w a l y . t x t

argv

o g r a m

i c e . t x t

r t

l

Presenter
Presentation Notes
We’ll study strings in much greater detail in the next chapter, but for now, your experience with strings from Java should be enough for you to understand the basics of the following discussion. When an operating system runs a program, it can pass information to the program through a mechanism called “command line arguments,” which we also cover in greater detail in the next chapter. A command line consists of an array of pointers, often named “argv.” Each pointer is one bit of information, in the form of a string, that the operating system can pass into the program. Sometimes, it is convenient to access a single character of that data, which we can do by thinking of the data as a two-dimensional array of characters.

CHARACTER ACCESS:
ARRAY OF STRINGS

• Command line arguments

• Come from the operating system

• Are an array of strings

• Individual characters are accessed with two
indexes: [row][col]

• argv[2][5] is ‘r’

p r

a l

d i l b e . t x t

w a l y . t x t

argv

o g r a m

i c e . t x t

r t

l

0

1

2

3

0 1 2 3 4 5 6 7 8 9 10

Presenter
Presentation Notes
Arrays are always 0-indexed, so we index argv from 0 to, in this example, 3. Each string is also 0-indexed with the valid index values as illustrated. So, looking at row index 2, and column index 5, we find the character ‘r.’ When we do this, the row must be the first index and column must be the second index.While there are a few cases where the index order is not important, there are many cases where it is. So, throughout the textbook, row first and column second is the “correct” order.

	Index Order
	Array Definition and�memory allocation
	Reasons for adopting�[rows][cols]
	Programming Example
	Character Access:�Array of Strings
	Character Access:�Array of Strings

