
INDEX ORDER

Does the order matter?

Delroy A. Brinkerhoff

Presenter Notes
Presentation Notes
We now have enough understanding of arrays and the syntax surrounding their use to return to a concept introduced earlier in the chapter: the order in which programs use indexes to access array elements. Focusing on two-dimensional arrays, we ask ourselves, "Does it matter in which order programs use the subscripts to access array elements?"

ARRAY DEFINITION AND
MEMORY ALLOCATION

int array[2][3];

int array[3][2];

rows × cols = cols × rows

array 0
1
2
3
4
5

Presenter Notes
Presentation Notes
The order of the indexes or subscripts in the definition does not impact the amount of memory the compiler must allocate to store an array. However, it does affect where the program stores individual elements within the allocated memory. In many programs, if the programmer consistently uses the same index order throughout the program, then the index order does not matter. Nevertheless, there are many reasons to adopt a standard order of rows for the first index or subscript and columns for the second.

TRADITION

• Mathematics

• The first index increases down columns

• The second index increases along rows

• Other programming languages

• FORTRAN: real A(3,2)

• ALGOL: REAL A[0:2,0:1]

• C++ continues the practice

Presenter Notes
Presentation Notes
Tradition may seem like a weak argument for adopting an index order, but I maintain that it is the strongest and most significant argument. Mathematics precedes modern computer programming languages. In mathematical matrices, the row index is first, increasing downwards through the rows, and the column index is second, increasing horizontally across the columns.FORTRAN (a contraction of formula translation), one of the first widely used programming languages, was created to translate formulas into machine code. FORTRAN always specifies two-dimensional arrays rows first, followed by columns. ALGOL, the predecessor of many modern programming languages (e.g., C, C++, C#, Pascal, Ada, etc.), also follows the rows-by-columns order.Following the longstanding practice of rows first and columns second reduces the chances for errors and makes code easier for others to read and understand.

INITIALIZER LIST ORDER

char array[3][2] = { 'A', 'B', 'C', 'D', 'E', 'F' };

for (int i = 0; i < 3; i++)
{
 for (int j = 0; j < 2; j++)
 cout << setw(2) << array[i][j];
 cout << endl;
}

A B
C D
E F

Presenter Notes
Presentation Notes
When programmers know an array's initial values when they write the code, they can store them in the array with an initializer list. The example defines and initializes a two-dimensional array with a single statement, which fills the array by rows. The text refers to this as "initializer list order." It's difficult to move the console cursor left or upward on computers displaying English and similar languages, meaning it's "natural" to print characters left to right and top to bottom. The for-loops display the array's elements correctly, demonstrating the initializer list order.

INITIALIZER LIST ORDER

char array[2][3] = { 'A', 'B', 'C', 'D', 'E', 'F' };

for (int i = 0; i < 3; i++)
{
 for (int j = 0; j < 2; j++)
 cout << setw(2) << array[i][j];
 cout << endl;
}

A B
D E
ä

Presenter Notes
Presentation Notes
Switching the array's indexes in the definition (highlighted in red) still compiles but corrupts the output. Running the code on a different computer or at other times may result in a different output, perhaps even the correct output, but correct programs must always produce the correct results on all systems at all times.

INITIALIZER LIST ORDER

char array[3][2] = { 'A', 'B', 'C', 'D', 'E', 'F' };

for (int i = 0; i < 2; i++)
{
 for (int j = 0; j < 3; j++)
 cout << setw(2) << array[i][j];
 cout << endl;
}

A B C
C D E

Presenter Notes
Presentation Notes
This version switches the "2" and "3" in the for-loops while leaving the original index order unchanged. The switch corrupts the output, printing some cells more than once and failing to print another.

INITIALIZER LIST ORDER

char array[2][3] = { 'A', 'B', 'C', 'D', 'E', 'F' };

for (int i = 0; i < 2; i++)
{
 for (int j = 0; j < 3; j++)
 cout << setw(2) << array[i][j];
 cout << endl;
}

A B C
D E F

Presenter Notes
Presentation Notes
The final version switches the "2" and "3" in the array's definition and the for-loops. The output is correct, but despite the similarities between this and the original array, the two arrays are not the same.

EXTRACTING ROWS

void print_row(char* row, int size)
{
 for (int i = 0; i < size; i++)
 cout << setw(2) << row[i];
}

char array[][3] = { 'A', 'B', ‘C’,
 'D', 'E', 'F’,
 'G', 'H', ‘I’,
 'J', 'K', 'L’ };

print_row(array[2], sizeof(array[2]) / sizeof(char));

Presenter Notes
Presentation Notes
C++ allows programs to access a two-dimensional array with a single index. This operation extracts data by rows, treating them as units. Accessing a two-dimensional character array with a single index produces a character pointer, one way to represent a string in a C++ program. The print function's first argument is a character pointer, matching one row extracted from the character array. However, C++ doesn't allow the same access by columns.

EXTRACTING ROWS

char array[][4] = {
 'A', 'B', 'C', '\0',
 'D', 'E', 'F', '\0',
 'G', 'H', 'I', '\0',
 'J', 'K', 'L', '\0'
};

cout << array[2] << endl;

Presenter Notes
Presentation Notes
Similarly, C++ sometimes represents textual data as an array of strings, where each string is an array of characters. The null-termination character, '\0' highlighted in green, is an escape sequence forming a C-string. The text covers C-strings and null-termination in more detail in the next chapter. Programs can access individual array characters with two indexes and individual rows with a single index, but they cannot access the characters by columns.

COMMAND-LINE ARGUMENTS

• Command line arguments

• char* argv[]

• char** argv

• Come from the operating system

• Are an array of strings

• Program access arguments with one index
and characters with two: [row][col]

p r

a l

d i l b e . t x t

w a l y . t x t

argv

o g r a m

i c e . t x t

r t

l

Presenter Notes
Presentation Notes
Whenever the operating system runs a program, it can pass information to it through a command-line interface (CLI) consisting of an array of "command line arguments." A command line consists of an array of pointers, often named "argv," defined as an array of character pointers or equivalently as a double character pointer. Each pointer is one argument (a string) the operating system passes to the program. Programs access arguments with a single index or individual characters with two indexes.

COMMAND-LINE ARGUMENTS

• Command line arguments

• char* argv[]

• char** argv

• Come from the operating system

• Are an array of strings

• Program access arguments with one index
and characters with two: [row][col]

• argv[2][5] is ‘r’

p r

a l

d i l b e . t x t

w a l y . t x t

argv

o g r a m

i c e . t x t

r t

l

0

1

2

3

0 1 2 3 4 5 6 7 8 9 10

Presenter Notes
Presentation Notes
Arrays and strings are always zero-indexed, so argv[2] is "dilbert.txt" and argv[2][5] is the character 'r.' Programs cannot reverse the row and column indexes or access the arguments by columns. The text also covers command-line arguments in more detail in the next chapter.

PUBLIC INT[][] ARRAY = NEW INT[3][2]; PUBLIC INT[][] ARRAY = NEW INT[2][3];

CONSISTENCY WITH JAVA

Presenter Notes
Presentation Notes
In Java, a two-dimensional array is an array of arrays that looks very much like command-line arguments. Switching the row and column order results in two different data organizations. Programmers implement one popular online game in both C++ and Java. They write the front end in C++ for speed and the back end in Java for uniform server access. Using a consistent index order makes the data exchange more straightforward. In general, practicing a consistent index order makes switching between languages or converting programs from one language to another easier and less error-prone.

	Index Order
	Array Definition and�memory allocation
	Tradition
	Initializer List Order
	Initializer List Order
	Initializer List Order
	Initializer List Order
	Extracting Rows
	Extracting Rows
	Command-line Arguments
	Command-Line Arguments
	Consistency with Java

