
ROW-MAJOR ORDERING
AND INITIALIZER LISTS

Mapping array elements to memory locations

and compile time array initialization

Delroy A. Brinkerhoff

Presenter Notes
Presentation Notes
We discussed one-dimensional initializer lists earlier in the chapter. Later, we extended them to two dimensions to help justify the rows-by-columns index order. Although initializer lists are distinct from row-major ordering, they simplify the example programs. Furthermore, row-major ordering explains some syntactic nuances of multi-dimensional initialization lists.

PASSING TWO-DIMENSIONAL ARRAYS

char a1[4][3] = { 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L' };
char a2[3][2] = { 'u', 'v', 'w', 'x', 'y', 'z’ };

void print(char array[][3], int i, int j)
{
 cout << array[i][j] << endl;
}

void print(char array[][2], int i, int j)
{
 cout << array[i][j] << endl;
}

Presenter Notes
Presentation Notes
When a program creates a two-dimensional array and passes it as an argument to a function, it can omit the size of the first dimension but must specify the size of the second dimension. So, while a program can define two overloaded functions to handle the different-sized arrays, it can't define a single function that can process both. What causes this behavior?

STORING 2D ARRAYS IN MEMORY

• Row-major mapping

• i * ncols + j

• void print(char array[][3], int i, int j)

• Example:

• array[2][1]

• 2 * 3 + 1 = 7

Presenter Notes
Presentation Notes
Computer memory exists in a linear address space, meaning computers access their physical memory with a single address. Alternatively, programs access two-dimensional arrays with two addresses or index values. The compiler maps the two-dimensional indexes to a single linear address. For simplicity, we treat computer memory as a one-dimensional array.
Historically, compilers used two techniques to map two dimensions to one: row-major and column-major ordering. Today, column-major ordering is rare, so we only consider row-major ordering. Row-major ordering linearizes a two-dimensional array by rows: first, the top row, then the second, third, and bottom row. The mapping function depends on the row and column indexes and the number of columns in the array, but it doesn't depend on the number of rows. We can omit the first dimension size when passing a two-dimensional array because the mapping function doesn't need it.
We follow the element at row = 2 and column = 1—the letter 'H'—through the linearization to demonstrate the mapping operation. Plugging in the numbers and completing the calculation, the mapping locates the element at location 7 in the linear array.

PROGRAMMER-IMPLEMENTED INDEXING

void print(char* array, int i, int j, int ncols)
{
 cout << array[i * ncols + j] << endl;
}

char a1[4][3] = { 'A', 'B', 'C', 'D', 'E', 'F’,
 'G', 'H', 'I', 'J', 'K', 'L' };
char a2[3][2] = { 'u', 'v', 'w', 'x', 'y', 'z' };

print((char *)a1, 2, 1, 3);
print((char *)a2, 1, 0, 2);

Presenter Notes
Presentation Notes
Programmers can synthesize a two-dimensional array from a linear array with the row-major mapping operation. The example creates two two-dimensional arrays and passes them to the same function. The first parameter is a character pointer, and the program must cast the arrays to type-match it. The first parameter doesn't depend on the number of columns, so it matches both arrays. In contrast, the mapping operation does depend on the number of columns, so the program passes the value as a separate argument. The mapping operation converts two indexes, i and j, into the single index needed to locate an element in the linear array.

SYNTHESIZING 2D ARRAYS

inline int index(int row, int col, int ncols)
{
 return row * ncols + col;
}

char* array = new char[nrows * ncols];
cout << array[index(2, 1, 3)] << endl;

char array[4][3];
cout << *((char*)(array) + index(2, 1, 3)) << endl;

Presenter Notes
Presentation Notes
The next logical step is to implement the mapping operation as an index function, and implementing it "inline" prevents additional runtime overhead. Programs can use the function to synthesize a two-dimensional array with any number of rows and columns. Although the syntax is messy and confusing, programs can also use the function with local or stack arrays.

GENERALIZING ARRAY FUNCTIONS

void print(char array[][3], int i, int j)
{
 cout << array[i][j] << endl;
}

void print(char array[][2], int i, int j)
{
 cout << array[i][j] << endl;
}

void print(char* array, int i, int j, int ncols)

{

 cout << array[i * ncols + j] << endl;

}

char a1[4][3];
char a2[3][2];

print(a1, 2, 1);
print(a2, 1, 0);
print((char *)a1, 2, 1, 3);
print((char *)a2, 1, 0, 2);

Presenter Notes
Presentation Notes
The differing number of columns is sufficient to overload functions. However, this approach requires a different function for each column size, which is appropriate when the functions perform distinct tasks but are otherwise inconvenient. Programmers can generalize the function, making it independent of the column size, by treating it as a one-dimensional array and mapping the row and column indexes, i and j, to a single index value.

	Row-Major Ordering�And Initializer Lists
	Passing two-dimensional arrays
	Storing 2D arrays in memory
	programmer-implemented Indexing
	Synthesizing 2D arrays
	Generalizing Array Functions

