
ARRAYS AND SECURITY

C++ does not automatically check array indexes

Delroy A. Brinkerhoff

Presenter Notes
Presentation Notes
We first encountered the problem of writing secure code during our discussion of pointers. Given the strong connection between pointers and arrays, it shouldn’t be surprising that security is again an issue, this time in the context of arrays. Unlike Java, C++ does not automatically check array indexes to ensure that they are valid or in-bounds. Not checking array indexes should not be viewed as a defect. While this approach does put a greater responsibility on programmers, it also allows them to choose where such checks are necessary and where they are not, which improves overall program efficiency.

INDEXING AN ARRAY OUT-OF-BOUNDS

• A “buffer” is an array

• Indexing an array out-of-bounds is
also known as:

• Buffer overflow

• Buffer overrun

• Trying to put more data into the
array or buffer than it can hold

• Like trying to overfill a glass

• Challenging errors to find

Presenter Notes
Presentation Notes
Recalling that C++ arrays are zero-indexed, meaning that the first element is located at position 0, indexing an array out-of-bounds means using an index value less than 0 or greater than the size of the array minus one. In the example, the array has a size of 10, so the last legal index value is 9. Indexing the array with a value less than 0 or greater than 9 is an indexing error.A buffer is another name for an array, so indexing an array out-of-bounds is also called a buffer overflow or a buffer overrun. Regardless of which name is used to describe the error, the problem is trying to store more data in the array than it can hold – illustrated here by trying to pour a big bottle of Coke into a small glass.Like pointers, errors associated with arrays can be difficult to find because their behavior depends on what is in the memory reached in error, which programmers can’t always control. These errors are not only difficult to find, but they also create insecure code that has been exploited in the past by malware. There are four situations where programmers need to manually check for index errors and prevent them.

VALIDATE USER INPUT

Glass glasses[3];

cin >> destination;
cout << "Pour TO glass: <1, 2, or 3>: ";
cin >> source;
cout << "Pour FROM glass: <1, 2, or 3>: ";

if (source > 0 && source <= 3 && destination > 0 && destination <= 3)
 glasses[destination - 1].pour(glasses[source - 1]);
else
 cerr << "Glasses must be numbered 1, 2, or 3" << endl;

Presenter Notes
Presentation Notes
First, whenever an array index is based on user input, the input must be validated before indexing takes place. This code fragment is a part of a game where a user pours water from one glass to another. The code creates an array of three instances of the Glass class and stores them in an array. For the user's convenience, the glasses are numbered 1, 2, and 3 rather than by the array index values of 0, 1, and 2.The user selects two of the three glasses to participate in the pour operation. The program uses a simple if-statement to verify that the user has entered valid glass numbers, that is, that is that the selected glasses are numbered 1, 2, or 3. Only after the glass numbers are validated, are they used to index into the array. Notice that 1 is subtracted from the glass numbers to form valid array index values. If either number is invalid, indexing does not take place, which avoids an out-of-bounds error.

GUARD INDETERMINATE LOOPS

int scores[100];
int score;
int count = 0;

cout << "Enter a score (-1 to stop): ";

cin >> score;
while (score != -1 && count < 100)
{
 scores[count++] = score;
 cin >> score;
}

int scores[100];
int count = 0;

cout << "Enter a score (-1 to stop): ";

do
{
 cin >> scores[count++];
}while (scores[count - 1] != -1 && count < 100);
count--; // discard the -1

Presenter Notes
Presentation Notes
Second, programmers need to guard indeterminate loops to prevent them from overrunning the end of the array. Do and do-while loops run until some condition is detected. In these examples, that condition is the user entering a -1. If the loops store data into successive array elements, as in these examples, the array can be over-filled or overrun if the ending condition isn’t detected soon enough. To prevent this from happening, a second condition, based on the size of the array, is added to force the loop to end if the other ending condition doesn’t take place in time.�

VALIDATE INDEX CALCULATIONS

for (. . . i . . .)
 for (. . . j . . .)
 . . . array[i - j] . . .

Presenter Notes
Presentation Notes
Third, programmers must pay special attention to index values that result from calculations: the calculations must be rigorously tested before the program is deployed. The tiny fragment of code shown here is from a program that I wrote early in my career. The two for-loops were correct, and the array index was appropriately a function of the two loop-control variables. My error was that I reversed the order of the two variables in the difference operation. This error resulted in an index value that began near the middle of the array, slowly decreased to 0, and then went out-of-bounds as the value became less than zero.Unlike the first two situations, a test to validate the index value is not the solution. The problem illustrated here is a straightforward programming error, and once corrected, the error will not index the array out-of-bounds again. Use the debugger to verify that all indexing calculations are correct.

PASS ARRAYS AS TWO ARGUMENTS

const int size = 8;
int scores[size];
 . . .
void function(scores, size);

Presenter Notes
Presentation Notes
Finally, C++ programmers must always pass arrays into functions as two arguments: the array itself and the size of the array. But should the size represent the number of filled array elements or the total capacity of the array? If the function is storing data in the array, treat the size as the capacity. This practice will prevent the program from overfilling the array. If the function is using data already stored in the array, treat the size as the number of filled elements, which will prevent the program from using uninitialized data. And if the function is both storing and using data, it may be necessary to pass two sizes.

	Arrays and Security
	Indexing an array out-of-bounds
	Validate User Input
	Guard indeterminate loops
	Validate index calculations
	Pass Arrays As Two Arguments

