
TWO-DIMENSIONAL ARRAYS

Specifying the size at runtime

Delroy A. Brinkerhoff

Presenter Notes
Presentation Notes
If we are not working in a specialized field like mathematics or engineering, one-dimensional arrays are often sufficient for most of our programming needs. Nevertheless, we sometimes need two- or three-dimensional arrays. This section explores some problems and solutions for creating and using these arrays.

WORKS

• int table[20][12];

• double* scores = new double[size];

• void function(int table[][12]);

• double* scores = new double[rows][cols];

• void function(int table[][]);

DOESN’T WORK

CREATING AND USING ARRAYS

Presenter Notes
Presentation Notes
In the multtab example appearing earlier in this chapter, we saw that it was easy to create a two-dimensional array as an automatic variable on the stack – so long as we know all the dimension sizes when we write the code. It’s also easy to create a one-dimensional array dynamically on the heap using a variable as the dimension size. Unfortunately, C++ won’t allow us to use variables for more than one dimension size. Furthermore, when we pass a multi-dimensional array to a function parameter, we can skip the size of the first dimension but not the second and subsequent dimensions. C++ won’t allow us to write a general function that accepts a two-dimensional array with unspecified dimension sizes. Understanding these restrictions is the first step to understanding how to work around them.

PASSING TWO-DIMENSIONAL ARRAYS

char a1[4][3] = { 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L' };
char a2[3][2] = { 'u', 'v', 'w', 'x', 'y', 'z’ };

void print(char array[][3], int i, int j)
{

cout << array[i][j] << endl;
}

void print(char array[][2], int i, int j)
{

cout << array[i][j] << endl;
}

Presenter Notes
Presentation Notes
Let’s illustrate the trouble that the last restriction can cause. Imagine that a program defines two two-dimensional character arrays and that a programmer wants to create a print function that will print an element in either one. Although both arrays are character arrays, the programmer can’t pass them to the same print function because their sizes are different and part of the parameter definition. This restriction and requiring the column size when creating a two-dimensional array is a product of how computers arrange arrays in memory.

STORING 2D
ARRAYS IN
MEMORY

A B C
D
G
J

E F
H I
K L

0 1 2
0
1
2
3

j

i

A

E

I

B
C
D

F

J

G

K

H

L

ncols

nr
ow

s

0

4

8

1
2
3

5

0

6

10

7

11

A

B

C

D
G
J

E

F

H

I

K

L

row
major

column
major

• Row-major mapping

• i * ncols + j

• Example:

• array[2][1]

• 2 * 3 + 1 = 7

Presenter Notes
Presentation Notes
A computer’s main memory looks like a long, one-dimensional array of bytes. The address of each byte is the same as an array index. So, when a programmer creates and uses a two-dimensional array, the compiler is responsible for mapping the row and column indexes of the array into a single index or address. The computer can use either row-major or column-major ordering to do the mapping.Row-major takes the rows of the array, one at a time, and organizes them in a line. Similarly, column-major takes the columns of the array, one at a time, and arranges them linearly. Although compilers can use either ordering, row-major is the most common and is the ordering used throughout the following discussion.Once the two-dimensional array elements are arranged linearly in memory, the compiler must map the row and column index into a single linear index. Fortunately, the compiler can do the mapping with a straightforward formula. Notice that the formula requires the two array indexes, i and j, and the number of columns, but it doesn’t need the number of rows. This observation explains why the size of the first dimension is not required when a program passes a two-dimensional array to a function.As a demonstration of the row-major mapping, let’s begin with the 4-by-3 array illustrated and suppose that a program needs to access the element at row = 2 and column = 1 – this is the element ‘H’ highlighted in yellow. Plugging the numbers into the row-major formula, we calculate 7 as the index location in the linear array.

PROGRAMMER-IMPLEMENTED MAPPING

void print(char* array, int i, int j, int ncols)
{

cout << array[i * ncols + j] << endl;
}

char a1[4][3] = { 'A', 'B', 'C', 'D', 'E', 'F’,
'G', 'H', 'I', 'J', 'K', 'L' };

char a2[3][2] = { 'u', 'v', 'w', 'x', 'y', 'z' };

print((char *)a1, 2, 1, 3);
print((char *)a2, 1, 0, 2);

Presenter Notes
Presentation Notes
The programmer can use row-major mapping to create a generalized function. There are three additional implementation details:First, the function “expects” a linear or one-dimensional array. I’ve used the pointer notation here, but you could also use the array notation based on the empty square brackets.Second, the function also requires the two-dimensional array indexes, i and j, and the number of array columns.Finally, the program casts the two-dimensional arrays into linear or one-dimensional arrays. The casts satisfy the requirement that the argument and parameter types must match but don’t change the array addresses.By passing the number of array columns to the function and explicitly calculating the row-major mapping there, we create a generalized function that works with any size character array.

SYNTHESIZING A 2D ARRAY

inline int index(int row, int col, int ncols)
{

return row * ncols + col;
}

int* table = new int[nrows * ncols];

table[index(row, col, ncols)]
table[row * ncols + col]

Presenter Notes
Presentation Notes
We can also use row-major ordering to create an array that behaves like a two-dimensional array and specify both dimension sizes at runtime. First, we write a function, named index in this example, that carries out the row-major calculation. Next, we create a one-dimensional array that is large enough to hold all the two-dimensional array elements – this operation is like calculating the area of a rectangle. Finally, the “trick” synthesizes a two-dimensional array from a linear one. It maps the row and column indexes from some problem to the linear array created in the program with the index function. Of course, the function is entirely optional as we can embed the row-major calculation inside the array index, but see the textbook for some additional advantages the function provides.

CREATING A TWO-DIMENSIONAL ARRAY
AS AN ARRAY OF ARRAYS

nr
ow

s

ncols

.

.

.

table

• Advantage: Element access uses a two-index notation

• table[row][col]

• Disadvantages:

• creating the array

• destroying the array

Presenter Notes
Presentation Notes
As indicated earlier in the discussion, C++ allows programmers to create one-dimensional or linear arrays and specify their size at runtime. We can use this capability to create a two-dimensional array as an array of arrays. Although making and eventually destroying the component arrays does take some additional effort, the advantage is that we can use the natural two-dimensional or two-index notation in our programs. If we are using two-dimensional arrays in a program that’s already complex, simplifying the notation and matching it to the original problem may be well worth the overhead.

CREATING &
DESTROYING ARRAYS

int** table = new int* [nrows];
for (int i = 0; i < nrows; i++)

table[i] = new int[ncols];

for (int i = 0; i < nrows; i++)
for (int j = 0; j < ncols; j++)

...table[i][j]...

for (int i = 0; i < nrows; i++)
delete[] table[i];

delete[] table;

nr
ow

s

ncols

.

.

.

table int** table = new int* [nrows];

for (int = 0; i < nrows; i++)
table[i] = new int[ncols];

Presenter Notes
Presentation Notes
Creating a two-dimensional array as an array of arrays is a two-step process. In the first step, boxed in red, we make the array of pointers, the array that holds the other arrays. The variable “table” is a pointer that points to an array of pointers, so we define it as a double-pointer with two asterisks. The array elements are integer-pointers, so the target of the “new” operator is an integer-pointer. In the second step, boxed in blue, we create each data array one at a time with a for-loop. Each element of these arrays is an integer. We can also make an array of doubles or instances of a class by changing the type names at the indicated locations.Once we have created the two-dimensional array, we can use it throughout the rest of the program with the two-index notation.When we are finished with the array, we destroy it in the reverse order of how we created it. The square brackets added to the “delete” operator indicate that we are destroying an array rather than a single data item.

	Two-dimensional arrays
	Creating and using arrays
	Passing two-dimensional arrays
	Storing 2D arrays in memory
	programmer-implemented mapping
	Synthesizing a 2D array
	Creating a Two-dimensional array�as an array of arrays
	Creating & destroying arrays

