DYNAMIC AND
MULTI-DIMENSIONAL ARRAYS

Specifying array size at runtime

Delroy A. Brinkerhoff

Presenter Notes
Presentation Notes
One-dimensional arrays are often sufficient for most of our programming needs if we are not working in a specialized field like mathematics or engineering. Nevertheless, we sometimes need two- or three-dimensional arrays. This section explores some problems and solutions for creating and using them.

CREATING AND USING ARRAYS

WORKS DOESN’T WORK
int scores[15]; int* scores = new int[15][10];
int scores[15][10]; int* scores = new int[rows][cols];

int* scores = new int[15];

int* scores = new int[size];

void function(int table[][12]); void function(int table[][]);

Presenter Notes
Presentation Notes
In the multtab example earlier in this chapter, we saw that it was easy to create a two-dimensional array as an automatic variable on the stack—so long as we know all the dimension sizes when we write the code. It's also easy to create a one-dimensional array dynamically on the heap using a variable as the dimension size.
Unfortunately, creating two-dimensional arrays dynamically on the heap is more challenging. Furthermore, it doesn't matter if we specify the dimension sizes with constants or variables: both fail.

AUTOMATIC TYPE DEDUCTION

int nrows = 15; The number of rows is dynamic:
const int ncols = 10; |

nput
auto scores = new int[nrows][ncols]; Calculated

The number of columns is static:
Must be a compile-time constant

For two or more dimensions, only the first
may be a variable

Presenter Notes
Presentation Notes
Automatic type deduction, an extension of the "auto" keyword's behavior, is the first workaround. The syntax's simplicity makes it a good solution. Nevertheless, one disadvantage may render it unusable for some problems. While the first dimension can be dynamic, a variable whose value the program determines at runtime, the second and subsequent dimensions must be a compile-time constant.
Given this limitation, programs instantiate the array with the "new" operator and let the compiler determine the appropriate data type.

nrows

table

< ncols ———

CREATING A TWO-DIMENSIONAL ARRAY
AS AN ARRAY OF ARRAYS

Advantages
Array sizes match a specific problem
Element access uses a two-index notation: table[row][col]
May be extended to higher dimensions
Disadvantages:
creating the array

destroying the array

Presenter Notes
Presentation Notes
C++ allows programmers to create one-dimensional or linear arrays and specify their size at runtime. We can use this capability to create a two-dimensional array as an array of arrays, our second workaround. Although making and eventually destroying the component arrays requires additional effort, the advantages are that we can create arrays perfectly sized for a specific problem and use the natural two-dimensional or two-index notation in our programs. These advantages often justify the disadvantages.

Nnrows

table int** table = new int* [nrows];
for (int = 0; i < nrows; i++)
table[i] = new int[ncols];
N
B e NN

ncols —

CREATING &
DESTROYING ARRAYS

int** table = new int* [nrows];
for (int 1 = 0; 1 < nrows; i++)
table[i1i] = new int[ncols];
for (int 1 = 0; 1 < nrows; i++)
for (int j = 0; j < ncols; J++)
...tablef[i][3]]...
for (int 1 = 0; 1 < nrows; 1i++)

delete[] table[i];
delete[] table;

Presenter Notes
Presentation Notes
Creating a two-dimensional array as an array of arrays is a two-step process. In the first step, boxed in red, we make the array of pointers. The variable "table" is a pointer that points to an array of pointers, so we define it as a double-pointer with two asterisks. Each element in the row array is a pointer pointing to a data array, an array of integers. Therefore, the "new" operator creates an array of integer pointers.
In the second step, boxed in blue, we create each data array one at a time with a for-loop. Each element of these arrays is an integer. By changing the type names at the indicated locations, we can also make an array of doubles or instances of a class.
Once we have created the two-dimensional array, we can use it throughout the rest of the program with the two-index notation.
When we finish using the array, we destroy it in the reverse order of how we created it. The square brackets added to the "delete" operator indicate that we are destroying an array rather than a single data item.

SYNTHESIZING A 2D ARRAY

inline int index(int row, 1int col, int ncols)

{

return row * ncols + col;

}

int* table = new int[nrows * ncols];

table[index (row, col, ncols)]
table[row * ncols + col]

Presenter Notes
Presentation Notes
As a third workaround, we can also use row-major ordering to create an array that behaves like a two-dimensional array and specify both dimension sizes at runtime. First, we write a function (named "index" in this example) that carries out the row-major calculation. Next, we create a one-dimensional array large enough to hold all the two-dimensional array elements—this operation is like calculating the area of a rectangle.
This "trick" synthesizes a two-dimensional array from a linear one by mapping the row and column indexes from a problem to the linear array's single index value. The function is optional as we can embed the row-major calculation inside the array index, but this approach separates the mapping operation from the original problem.

TWO-DIMENSIONAL INITIALIZER LISTS

AND ROW-MAJOR ORDERING

¥

L k2 = O

2
B|C
F
I
L

[QW=

v

#— ncols —»

T array[4][3];

5 5 < char array[4][3] = {

E- 1 D‘ IAI, IBI, lcl’ IDI’ E , fF),
C 2 G 1 1 1 1 1 1 | 1 1 | 1
E 4 B }s

F 5 E

3 =] H

H 7 K

| o C

]] F

k. 10 |

L 11 L

row column

major major

Presenter Notes
Presentation Notes
We previously established the connection between a two-dimensional array, an array list's storage order, and row-major ordering. The initializer list's elements are saved to the array by rows: first, the top row, then the second row, then the third, and finally, the last or bottom row. The program saves the two-dimensional array as one-dimensional in computer memory. This behavior matches the rows-by-columns view of two-dimensional arrays but fails when extending it to three or more dimensions.

THREE-DIMENSIONAL
INITIALIZATION ORDER

roWws

{
IAI) IBI) Icl, IDI) lEl_, (F),
IGI) IHI) III, IJI) IKI, IL)
}s
char array[4][3][2]

char* array = new char[nrows * ncols * nlayr]

inline int index(int i, int j, int k, int ncols, int nlayr)
{ return k + nlayr * (j + ncols * i); }

array[index(1, @, 1, ncols, nlayr)]

array[index(3, 0, 1, ncols, nlayr)]

Presenter Notes
Presentation Notes
Initializer lists always fill arrays from the last to the first dimension, right-to-left, in reverse English reading order. Consequently, elements in the last dimension are contiguous in memory, and the lists fill three-dimensional arrays by layers rather than rows. The text refers to this as "initializer list order."
We can use the standard row-major mapping operation, extended to three dimensions, to create an index function, allowing us to synthesize a three-dimensional array whose dimension sizes the program determines at runtime. Once the program makes the array, using the index function is straightforward.

== rows=r

ROWS X COLUMNS X LAYERS ORDER

THREE-DIMENSIONAL

aﬁ*l
\ﬂa‘i MIN|O
i P{Q|R
g 1 2 s TIU
AlB|CIIO]V|wW|X
DlE|F [
cH|1]J
1l E|L|SE
j= colums

char array[4][3][2]

char* array = new char[nrows * ncols * nlayr]

L fad =

inline int index(int i, int j, int k, int ncols, int nlayr)
{ return nrows * ncols * k + (j + ncols * i); }

array[index(1, @, 1, ncols, nlayr)]

array[index(3, 0, 1, ncols, nlayr)]

Presenter Notes
Presentation Notes
I prefer to imagine a three-dimensional array's indexes in a row-by-column-by-layer order. This organization parallels mathematical usage but precludes using initializer lists in C++ programs. Fortunately, three-dimensional arrays are uncommon in general programming, and considering that the values in initializer lists are specified at compile time, initializing three-dimensional arrays with initializer lists is quite rare.
We can still create an index function mapping a three-dimensional array's indexes to a single linear index value. However, the mapping expression does not follow the standard row-major mapping operation. The mapping operation skips over the preceding layers to locate an element inside the array. For example, to find the letter 'T,' the program must skip the layer with the letters 'A' through 'L.' Recalling that C++ arrays are zero-indexed, the mapping operation skips the layers with the expression nrows times ncols times k. The last part of the operation is the standard two-dimensional row-major operation. The process of making and using the arrays is unchanged from the previous organization.

	Dynamic and�Multi-Dimensional Arrays
	Creating and using arrays
	Automatic Type Deduction
	Creating a Two-dimensional array�as an array of arrays
	Creating & destroying arrays
	Synthesizing a 2D array
	Two-Dimensional Initializer Lists�And Row-Major Ordering
	Three-dimensional�Initialization Order
	Three-dimensional�rows x columns x layers Order

