

THE CHI-SQUARED STATISTIC

Comparing observed and expected results:

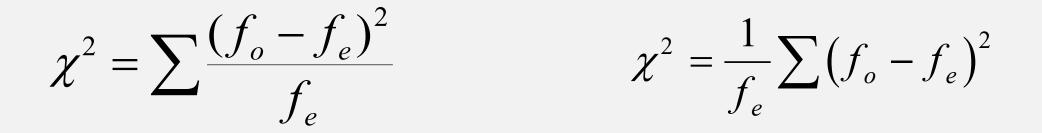
Meaningful v. meaningless data

EXAMPLE PROBLEM: LIKERT-SCALE QUESTIONS

- Did the instructor dress appropriately for class?
 - (a) always
 - (b) most of the time
 - (c) seldom
 - (d) never

• 100 students responds:

- (a) always 40
- (b) most of the time 30
- (c) seldom 20
- (d) never 10


THE CHI-SQUARED FORMULAS

- N = the number of data value(students responding) = 100
- k = the number of categories (choices) = 4
- $f_e =$ the expected frequency if the data are random = 100 / 4 = 25
- $f_o =$ the observed frequency = 40, 30, 20, and 10

$$f_e = \frac{N}{k} \qquad \qquad \chi^2 = \sum \frac{(f_o - f_e)^2}{f_e}$$

OBSERVED FREQUENCIES

$$\chi^{2} = \frac{1}{25} (40 - 25)^{2} + (30 - 25)^{2} + (20 - 25)^{2} + (10 - 25)^{2}$$

CHI-SQUARED SOLUTION: TWO IMPLEMENTATIONS

• Single function solution

Ē

- Focus on data input and output
- Converting formula, especially \sum , to C++
- Client-supplier solution
 - Separating input and output from computation is good program design
 - A supplier defines and supplies reusable services
 - The client is an application program that uses the supplier's services