
THE C++ STRING CLASS

#include <string>

Delroy A. Brinkerhoff

Presenter Notes
Presentation Notes
C++ provides a full-featured string class that is very similar to the Java String class. This section introduces the C++ string class and highlights some of the basic differences between the string classes in the two languages.Choosing the best order in which to present programming concepts is never easy. Sometimes concepts depend on each other and it’s not possible to introduce both first. The string class is obviously object-oriented, but the textbook formally introduces classes and objects in the next chapter. But if we switch the order of the concepts, then classes must be covered without one of the most important and most useful data types: strings. We take the approach that your previous Java experience with classes and objects, specifically strings, is sufficient to carry you through until classes and objects are covered in greater detail in the next chapter.

INTRODUCTION TO THE
C++ STRING CLASS

• The C++ string class is similar to the Java String class

• Class name begins with a lower case s

• Must #include <string>

• Supports more operators

• The string class is related to C-strings

• Supports operators (C-strings do NOT support operators)

• Manages its own memory

• Can convert to and from C-string

Presenter Notes
Presentation Notes
The Java String class is part of the lang package, which is automatically imported into each Java file. The C++ string class is specified in the string header file, which must be explicitly imported into each C++ file that uses the string class. The Java String class has more methods that does C++ strings, but C++ strings support many more operators than Java.The C++ string class is also related to C-strings but is generally easier to use. Specifically, C-strings do not support any operators at the string or content level – the only operators they support work at the pointer level. Another important difference is that string objects manage their memory which allows them to grow as needed – quite unlike C-strings. Finally, the string class defines functions that allow converting between strings and C-strings.

STRING CONSTRUCTORS

Prototype Example Comments
string(); string s1; Default constructor

string(const char* s); string s1("Hello"); Conversion constructor

string(const string& s); string s2(s1); Copy constructor

Presenter Notes
Presentation Notes
Instances of the string class, that is, string objects, can be created in several ways. Three of the most common constructors are illustrated here. The first or default constructor creates an empty string that may be the target of the assignment operation or other operations that will ultimately store information in the string. The conversion constructor builds a string object by converting a C-string into an instance of the string glass. The last or copy constructor builds a new string by copying an existing string object.

STRING OPERATORS

Operator Meaning Example
= Assignment s1 = s2

+ Concatenation s = s1 + s2;

+= Concatenation with assignment s += s2;

== Equality if (s1 == s2) . . .

!= Inequality if (s1 != s2) . . .

<, <=, >, and >= Relational if (s1 < s2) . . .

[] and at() Character access char c = s1[i];
char c = s1.at(i);

<< Output cout << s2;

Presenter Notes
Presentation Notes
Whereas the Java String class only supports two operators, + for concatenation and += for concatenation with assignment, the C++ string class supports numerous operators. Furthermore, excepting the square brackets used for character access, C-strings do not support any of these operators. Confusingly, C-string expressions involving these operators compile but do not behave as expected because they operate on the address of each C-string and not on the string’s contents.Conversely, these operators behave intuitively when used with instances of the string class. For example, the == and != operators return true if the contents of the two related strings are identical or are different respectively. And the relational operators order strings alphabetically (or more accurately, ascii-betically, that is, based on the ASCII collating sequence). For example, if s1 is “apple” and s2 is “zebra,” then s1 < s2 is true and s1 > s2 is false. String output is straightforward but not so string input, which is the topic of the next section.

	The C++ string class
	Introduction to the�C++ string class
	string Constructors
	String Operators

