CLASSES AND OBJECTS

A class is like a cookie cutter.

An object is like a cookie.

Delroy A. Brinkerhoff


Presenter Notes
Presentation Notes
Classes and objects are at the heart of the object-oriented model. While the two terms are sometimes used interchangeably, they represent different concepts. A class is a new data type while an object is a complex, structured variable created from a class.
Think of a class as a cookie cutter and objects as the cookies. The cookie cutter determines the size and shape of the cookies. When you roll out the dough, you can stamp out as many cookies as you want from just one cookie cutter. In a computer program, memory is the dough from which cookie objects are “stamped out” with the cookie cutter classes.



THE OBJECT-ORIENTED PARADIGM

"Object-oriented modeling and design is a way of thinking about problems using
models organized around real-world concepts. The fundamental construct is

the object, which combines both data structure and behavior in a single entity"
(Rumbaugh et al., 1991, p. I).

A way of looking at software problems
A way of implementing software solutions to those problems

Combining “both data structure and behavior in a single entity” is called
encapsulation



Presenter Notes
Presentation Notes
According to James Rumbaugh, “Object-oriented modeling and design is a way of thinking about problems using models organized around real-world concepts. The fundamental construct is an object which combines both data structure and behavior in a single entity.”
I think that what Rumbaugh is saying is that when we look at a problem through object-oriented glasses we see the objects that interact with each other in the problem. For example, if we are designing software to represent a bank, we would see various people like customers and tellers. But we would also see less tangible concepts like savings and checking accounts. Each customer and each account is an object. Software designers then create classes to represent each kind of object. For example, a single savings account class can describe all the savings account objects appearing the problem.
Combining “both data structure and behavior in a single entity” is called encapsulation and is the first principle or requirement of the object-oriented model.



OBJECTS HAVE DATA STRUCTURE

In the object-oriented model and in the Unified Modeling Language, data
structure is known as attributes

In Java, data structure is represented by instance variables or instance fields

In C++, data structure is represented by member variables or member data



Presenter Notes
Presentation Notes
What Rumbaugh calls “data structure” is, in contemporary object-oriented terms, called attributes. An attribute is a value that characterizes an object. For example, if we have a class named “person” and depending on how the class is used, appropriate attributes might include the person’s name, height, weight, etc. In a program, attributes are just variables that are part of a class. In a Java program, they are called instance variables or instance fields; in a C++ program, they are called member variables or member data.



OBJECTS HAVE BEHAVIOR

In the object-oriented model and in the Unified Modeling Language, behavior is
known as operations or behaviors

In Java, operations are represented by methods
In C++, operations are represented by member functions

Sending a message to an object is a way of invoking one of the object’s
operations behaviors; which is equivalent to calling one of an objects methods
or member functions



Presenter Notes
Presentation Notes
What Rumbaugh calls “behavior” is usually called operations in object-oriented terms, although the term behavior is also used. Operations correspond to methods in a Java program and to member functions in a C++ program. Object-oriented terminology also includes the phrase, “send a message to an object,” which just means to call one of an object’s operations, or in programming, to call an object’s method or function.



FEATURE VISIBILITY OR ACCESSIBILITY

-~ o~ Collectively, attributes and operations are
' N called features

\ Keywords control where features are
\ visible or accessible:

l —— © private: class only
~~~~~~~~~ protected: class and subclasses

;=== public: everywhere


Presenter Notes
Presentation Notes
Rumbaugh uses the term feature to collectively refer to attributes and operations. The visibility of an object’s features, or, said another way, the ability of one object to access the features of another object, is controlled by three keywords in a C++ program: private features are only visible and accessible by instances of the same class; while public features are visible and accessible by instances of all classes. protected features have a visibility or accessibility that is between public and private. We need to understand inheritance, which is one of five relationships that can exist between two classes, before we can fully appreciate protected features. We’ll study inheritance in a later chapter.



C++ CLASS SPECIFICATION

A class is a new data type

class Time

{

private:

int hours;
intminutes;
int seconds;

public:
Time () ;

Time (int h, int m, int
Time (1nt s);

Time
Time*

void
void

¥

add (Time t2);
add (Time* t2);

print () ;
read () ;


Presenter Notes
Presentation Notes
A C++ class specification is similar to a Java class but with some notable differences.
First, the class specification does not include the “public” or any other accessibility modifier
Second, rather than declaring each feature as public or private as is done in Java, the public and private modifiers label regions in the class. All features following the private label have private visibility and all features following the public label have public visibility. The public and private sections may appear in any order, and, in fact, there may be any number of labeled regions switching back and forth between public and private.
Perhaps the biggest difference between C++ and Java classes are the operations. Where Java includes the full body of all methods in the class, a C++ class often only provides prototypes in the class. It is possible to put the body of a C++ function in a class in some cases, but a prototype is all that is needed. We’ll explore this option in detail later.
A C++ class looks very much like a structure, and in fact, the two are closely related. The main difference is the default visibility of the members. By default, the members of a structure are public, and by default, the members of a class are private. So, even if the keyword “private” is omitted from the class specification, hours, minutes, and seconds are still private. Nevertheless, the keyword private is universally used. Furthermore, programmers typically use structs just for data and use classes whenever functions are also needed.



ACCESSING AN

OBJECT’S FEATURES

AUTOMATIC OBJECTS

Time start;
Time end;

start.hours = 060;

cout << start.minutes << out;

end.read () ;
Time total = start.add(end);
total.print () ;

DYNAMIC OBJECTS

Time* start = new Time;
Time* end = new Time;

start->hours = 60;

cout << start->minutes << out;

end->read () ;
Time* total =
total->print () ;

start—->add (end) ;


Presenter Notes
Presentation Notes
Which operator we use to access the features in an object depends on how we create the object. If the object is created as an automatic variable, we use the dot operator to access member variables and to call member functions. If the object is created dynamically with the new operator, then we use the arrow operator to access member variables and to call member functions.



	Classes and Objects
	The Object-Oriented Paradigm
	Objects have data structure
	Objects have behavior
	Feature Visibility or Accessibility
	C++ Class Specification
	Accessing an Object’s Features

