
CLASSES AND OBJECTS

A class is like a cookie cutter.

An object is like a cookie.

Delroy A. Brinkerhoff

Presenter Notes
Presentation Notes
Classes and objects are at the heart of the object-oriented model. While the two terms are sometimes used interchangeably, they represent different concepts. A class is a new data type while an object is a complex, structured variable created from a class.Think of a class as a cookie cutter and objects as the cookies. The cookie cutter determines the size and shape of the cookies. When you roll out the dough, you can stamp out as many cookies as you want from just one cookie cutter. In a computer program, memory is the dough from which cookie objects are “stamped out” with the cookie cutter classes.



THE OBJECT-ORIENTED PARADIGM

• "Object-oriented modeling and design is a way of thinking about problems using 
models organized around real-world concepts. The fundamental construct is 
the object, which combines both data structure and behavior in a single entity" 
(Rumbaugh et al., 1991, p. 1).

• A way of looking at software problems

• A way of implementing software solutions to those problems

• Combining “both data structure and behavior in a single entity” is called 
encapsulation

Presenter Notes
Presentation Notes
According to James Rumbaugh, “Object-oriented modeling and design is a way of thinking about problems using models organized around real-world concepts. The fundamental construct is an object which combines both data structure and behavior in a single entity.”I think that what Rumbaugh is saying is that when we look at a problem through object-oriented glasses we see the objects that interact with each other in the problem. For example, if we are designing software to represent a bank, we would see various people like customers and tellers. But we would also see less tangible concepts like savings and checking accounts. Each customer and each account is an object. Software designers then create classes to represent each kind of object. For example, a single savings account class can describe all the savings account objects appearing the problem.Combining “both data structure and behavior in a single entity” is called encapsulation and is the first principle or requirement of the object-oriented model.



OBJECTS HAVE DATA STRUCTURE

• In the object-oriented model and in the Unified Modeling Language, data 
structure is known as attributes

• In Java, data structure is represented by instance variables or instance fields

• In C++, data structure is represented by member variables or member data

Presenter Notes
Presentation Notes
What Rumbaugh calls “data structure” is, in contemporary object-oriented terms, called attributes. An attribute is a value that characterizes an object. For example, if we have a class named “person” and depending on how the class is used, appropriate attributes might include the person’s name, height, weight, etc. In a program, attributes are just variables that are part of a class. In a Java program, they are called instance variables or instance fields; in a C++ program, they are called member variables or member data.



OBJECTS HAVE BEHAVIOR

• In the object-oriented model and in the Unified Modeling Language, behavior is 
known as operations or behaviors

• In Java, operations are represented by methods

• In C++, operations are represented by member functions

• Sending a message to an object is a way of invoking one of the object’s 
operations behaviors; which is equivalent to calling one of an objects methods 
or member functions

Presenter Notes
Presentation Notes
What Rumbaugh calls “behavior” is usually called operations in object-oriented terms, although the term behavior is also used. Operations correspond to methods in a Java program and to member functions in a C++ program. Object-oriented terminology also includes the phrase, “send a message to an object,” which just means to call one of an object’s operations, or in programming, to call an object’s method or function.



FEATURE VISIBILITY OR ACCESSIBILITY

• Collectively, attributes and operations are 
called features

• Keywords control where features are 
visible or accessible:

• private: class only

• protected: class and subclasses

• public: everywhere

global

subclass

class

Presenter Notes
Presentation Notes
Rumbaugh uses the term feature to collectively refer to attributes and operations. The visibility of an object’s features, or, said another way, the ability of one object to access the features of another object, is controlled by three keywords in a C++ program: private features are only visible and accessible by instances of the same class; while public features are visible and accessible by instances of all classes. protected features have a visibility or accessibility that is between public and private. We need to understand inheritance, which is one of five relationships that can exist between two classes, before we can fully appreciate protected features. We’ll study inheritance in a later chapter.



C++ CLASS SPECIFICATION

A class is a new data type

class Time
{

private:
int hours;
int minutes;
int seconds;

public:
Time();
Time(int h, int m, int s);
Time(int s);

Time add(Time t2);
Time* add(Time* t2);

void print();
void read();

};

Presenter Notes
Presentation Notes
A C++ class specification is similar to a Java class but with some notable differences.First, the class specification does not include the “public” or any other accessibility modifierSecond, rather than declaring each feature as public or private as is done in Java, the public and private modifiers label regions in the class. All features following the private label have private visibility and all features following the public label have public visibility. The public and private sections may appear in any order, and, in fact, there may be any number of labeled regions switching back and forth between public and private.Perhaps the biggest difference between C++ and Java classes are the operations. Where Java includes the full body of all methods in the class, a C++ class often only provides prototypes in the class. It is possible to put the body of a C++ function in a class in some cases, but a prototype is all that is needed. We’ll explore this option in detail later.A C++ class looks very much like a structure, and in fact, the two are closely related. The main difference is the default visibility of the members. By default, the members of a structure are public, and by default, the members of a class are private. So, even if the keyword “private” is omitted from the class specification, hours, minutes, and seconds are still private. Nevertheless, the keyword private is universally used. Furthermore, programmers typically use structs just for data and use classes whenever functions are also needed.



Time* start = new Time;
Time* end = new Time;

start->hours = 60;
cout << start->minutes << out;

end->read();
Time* total = start->add(end);
total->print();

AUTOMATIC OBJECTS DYNAMIC OBJECTS

ACCESSING AN OBJECT’S FEATURES

Time start;
Time end;

start.hours = 60;
cout << start.minutes << out;

end.read();
Time total = start.add(end);
total.print();

Presenter Notes
Presentation Notes
Which operator we use to access the features in an object depends on how we create the object. If the object is created as an automatic variable, we use the dot operator to access member variables and to call member functions. If the object is created dynamically with the new operator, then we use the arrow operator to access member variables and to call member functions.


	Classes and Objects
	The Object-Oriented Paradigm
	Objects have data structure
	Objects have behavior
	Feature Visibility or Accessibility
	C++ Class Specification
	Accessing an Object’s Features

