
CLASS DEVELOPMENT

Analysis, Design, and Implementation/Programming

Delroy A. Brinkerhoff

Presenter Notes
Presentation Notes
Class development often includes three distinct phases or activities: analysis, design, and implementation or programming. Objects that correspond to the entities interacting in the problem are identified and abstracted into classes during analysis. During design, classes needed for a computer program are added and all classes are refined. The classes are converted into a program in the programming or implementation phase.

SERVER OR SUPPLIER CLIENT OR USER

THE TWO-HAT TECHNIQUE

Presenter Notes
Presentation Notes
The two-hat technique provides a useful perspective to guide class refinement. When designing a class, think of it as serving or supplying a set of services that are then used by a client class or program. When we wear our class designer hat, we try to make the best class that we can without worrying about how the class will be used. For example, the string class designer tries to include all the services that a good string class can provide – certainly more services than are needed by any one client program.
We switch hats when we need to use the services provided by another class. While wearing our user hat, we focus on the services that a class provides and ignore how those services are implemented. That is, we are unconcerned about the data the class maintains or what takes place in the function bodies.
Even if you are both the class designer and the class user, and even if you are writing both sets of code at the same time, take a moment and mentally switch hats as you shift focus between designing and using a class. Switching hats helps us to better maintain class boundaries and to design a better public interface for each class.

WHAT DO CLASSES “KNOW”

• The semantic content of a class may be
abstractly represented by a hierarchy

• Classes near the top are problem-oriented

• Class near the bottom are service-oriented

• Designed as a “shopping list”

• May provide more services than needed in a
given program – for example the string class

Application

Part 1 Part 2

string istream ostream

Se
m

an
tic

 A
w

ar
en

es
s

Presenter Notes
Presentation Notes
Another useful perspective is to think of a class as a living entity. Each class has a certain amount of “semantic awareness,” which just means that the class knows a certain amount about the problem that we are trying to solve. The level of awareness or knowledge can be abstractly represented by a tree or hierarchy. Classes at the top of the tree know a lot about the problem but not a much detail about how it is being solved. Classes at the bottom of the tree know a lot of detail but only about a small part of the overall problem.
The string class is again a good example of a low-level class. The string class knows a great deal about how to work with strings, but it knows very little about how its actions effect the larger solution of which it is but a small part. On the other hand, classes near the top of the tree are specialized and more problem-specific. When we design these specialized classes, we focus more on solving a specific problem and less on making a general, overall service supplier class.

THE PUBLIC INTERFACE

by Cmglee - via Wikimedia Commons

Presenter Notes
Presentation Notes
A good class design practice is to separate the class’s interface from its implementation, which means that we separate how a class is used from how the class functions or operates. Legos provide a good metaphor for this principle. Each Lego has one or more posts that conform to very precise dimensional standards. Each Lego also has one or more sockets that also have precise measurements. The posts and sockets are the Lego’s interface that allow individual Legos to connect and to work together. They are how a builder uses Legos to build big, elaborate structures.
Similarly, a class also has an interface, which consists of all of the non-private attributes and operations, or non-private features. As attributes or data are generally private, they are not part of a class’s public interface. The illustration suggests that the public interface includes the signatures of the non-private operations or functions. A function’s signature includes its name, its return type, and the number and type of each argument. In a sense, a class advertises its non-private features, which form its public interface.

ATTRIBUTES / VARIABLES

• Are typically private

• Be able to articulate a good reason
before making them non-private

• Consider access functions instead

• Provides stronger encapsulation

• Separates the interface from the
implementation

• Non-private attributes are not easily
removed or modified in future version

• Are typically public

• Make “helper” functions private to
prevent them from becoming part of the
public interface

• The function implementation (i.e., the
body) can change while the header or
signature remains unchanged

OPERATIONS / FUNCTIONS

DESIGN CONSIDERATIONS

Presenter Notes
Presentation Notes
There are several class characteristics to consider when designing a new class. Think of these characteristics as guidelines or a starting point, but make sure that you have a good reason before you deviate from them.
Attributes or member variables are generally private, which provides stronger encapsulation. Private attributes allow class developers to change the attributes later without impacting client code that uses the class. Consider using access operations, covered later in this chapter, in place of non-private attributes.
Alternatively, operations or member functions are generally public, with “helper” functions the exception. There are occasions when two or more member functions may share common code. One approach is to duplicate the common code in each function, but, unless the code is quite small, doing this needlessly increases the size of the executable. Even worse, it requires maintaining multiple copies of the same code. A helper function represents code that the class designer doesn’t want a client to call directly but that helps other operations or functions complete their responsibilities.

	Class Development
	The two-hat Technique
	What Do Classes “Know”
	The Public Interface
	Design Considerations

