MEMBER FUNCTIONS AND
PROGRAM ORGANIZATION

Defining and Calling

Member Functions

Delroy A. Brinkerhoff


Presenter Notes
Presentation Notes
Member functions share all the features of functions that we have studied so far but also add some features necessary to operate in an object-oriented program. This section formalizes many of these object-oriented features.



MEMBER FUNCTION CALLS
ARE BOUND TO OBJECTS

person

-name : string
-height : double
-weight : int

+print() : void

pO.print () ;
pl.print () ;
p2.print () ;

Dilbert
5.9
175

Alice
5.02
120

Wally
5.6
190



Presenter Notes
Presentation Notes
The most important difference between member and non-member functions are how they are called. In contrast to non-members, member functions must be called through an object. Or, said another way, member functions are always bound to an object and that object is the default target of the function. Furthermore, for an object to call or be bound to a function, the object must be an instance of a class that has the function as a member.
In this example, class “person” has three member variables or fields and a print function. Three objects are instantiated from the person class. Each object has all three fields but the values stored in the fields are different. The print function may be called through each object, and while the function is running, it is bound to that object and can access the object’s fields. For example, when p1 calls the print function and prints the fields, it prints “Alice,”, 5.02, and 120.



NON-MEMBER FUNCTIONS:
THE STRUCTURE ADD FUNCTION

Time add(Time tl, Time t2) // struct version

{
int 11 = tl.hours * 30600 + tl.minutes * 60 + tl.seconds;

int 12 = t2.hours * 30600 + t2.minutes * 60 + t2.seconds;

return make time (il + 1i2);


Presenter Notes
Presentation Notes
Let’s explore the differences in syntax between member and non-member functions by reviewing the add function used with the Time structure as it was introduced in chapter 5. The add function adds together two instances of the Time structure and returns a new structure to represent the sum. Both arguments are clearly visible in the argument list. The argument names clearly differentiate to which object each field reference applies. For example, in the first statement, the fields hours, minutes, and seconds, belongs to the first argument or t1. In the second statement, the fields belong to the second argument, t2.



TIME CLASS AND
ADD MEMBER FUNCTION

class Time
{
private:
int hours;
int minutes;
int seconds;
public:
Time add(Time t2)
{
int 11 = hours * 3600 + minutes * 60 + seconds;
int i2 = t2.hours * 3600 + t2.minutes * 60 + t2.seconds;
return Time (11 + 12);

¥


Presenter Notes
Presentation Notes
When Time is converted from a structure into a class, the fields and the add function are encapsulated together, which suggests that they have a tighter connection than they did as a structure.
Two important changes are also made to the syntax of the add function. First, there is now only one argument inside the parentheses. Second, the name of the removed argument, along with the dot operator, are removed from the first statement. So, it seems that the add function only has one Time object on which to operate. Or does it?



CALLING THE ADD FUNCTION

STRUCT VERSION CLASS MEMBER VERSION
Time x; Time x;
Time y; Time y;
Time z; Time z;

z = add(x, V); z = x.add(y)


Presenter Notes
Presentation Notes
Let’s compare how member and non-member functions are called. Non-member functions are represented by the structure version of Time. The function call requires that both parameters are present inside the parentheses. Member functions are represented by the Time class. Both objects are still present in the member function call, but the position of the first object has been moved from the parentheses to before the function name and the dot operator has also been added to the call. This is how a function becomes bound to an object. While the add function is running, it is bound to object x, which is the default target for the function’s statements.



IMPLICIT VS. EXPLICIT

IMPLICIT EXPLICIT

implied fully revealed
suggested exposed

not visible visible


Presenter Notes
Presentation Notes
It’s useful to have some terminology to help describe and label the objects participating in object-oriented function calls. The word “implicit” means implied or suggested; it describes something that is present but is not visible. “Explicit” means that something is fully revealed or exposed; it describes something that is present and is completely visible.



IMPLICIT AND EXPLICIT ARGUMENTS

PROTOTYPES FUNCTION CALLS
Bar foo () ; x.foo ()
Bar foo (Bar t2); x.foo(y);

Bar foo (Bar t2, Bar t3); x.foo(y, z);


Presenter Notes
Presentation Notes
In the case of member functions, all the objects or arguments that appear inside the parentheses are explicit, that is, they are fully visible. There may be zero or more explicit arguments and they may be of different types, but if they are inside the parentheses, then they are explicit. But the object that calls the function, the object to which the function is bound while it runs, is not directly visible in the prototype. Nevertheless, it is there. Its presence is implicit, implied by the rules of object-oriented function calls.



MEMBER FUNCTION
DEFINED INSIDE THE CLASS

Time
Time

Time

Time

{

X = y.add(z)

add (Time t2)

int i1l = hours * 3600 + minutes * 60 + seconds;
inti1i2 = t2.hours * 30600 + t2.minutes * 60 + t2.seconds;

return Time (il + 12);


Presenter Notes
Presentation Notes
Compare the function call (above the line) with the function definition (below the line). Object z in the function call is passed into argument t2, which is explicit or visible in the function. The names of explicit arguments are used to identify their fields when they are accessed.
Object y is also passed to the function but in a different way – it is passed by pointer, but the passing is entirely implicit. We’ll spend more time with this implied or implicit passing later in the chapter. Whenever a field is accessed in the function without being attached to an explicit argument, the field implicitly belongs to, you guessed it, to the implicit argument.
The add function is small and so makes a good candidate to be inlined or defined inside the class.



MEMBER FUNCTION
DEFINED OUTSIDE THE CLASS

Time
Time

Time

Time

{

X = y.add(z)

Time: :add (Time t2)

int 1l = hours * 3600 + minutes * 60 + seconds;
inti12 = t2.hours * 3600 + t2.minutes * 60 + t2.seconds;

return Time (il + 12);


Presenter Notes
Presentation Notes
The add function can also be defined outside of the class specification. How the function is called, and how the fields are accessed, all remain unchanged. The only syntax that changes is that we must tell the compiler to which class this add function belongs. We do that by adding the class name and the scope resolution operator, formed by two adjacent colons, to the name of the function. Even when defined outside of a class, member functions must still be prototyped in the class. This prevents someone from simply adding the class name to a function and thereby gaining access to the private features of the class.



TYPICAL PROGRAM ORGANIZATION

#include “Bar.h”
class Bar #include “Bar.h”
{ int Bar::function()
int function(); { Bar b;
}; . int i = b.function();
}

Bar.h Bar.cpp client.cpp


Presenter Notes
Presentation Notes
The final slide graphically illustrates a common program organization. Each class specification is typically placed in its own header file. The long functions, more than four or five lines of code, are placed in a source code or .cpp file. Client code is written in one or more separate source code files. Client programs can use many classes, which they access by #including each header file as needed.



	Member Functions and Program Organization
	Member function calls�are bound to objects
	Non-Member Functions:�The Structure add Function
	Time Class and�Add member function
	Calling The Add Function
	Implicit vs. Explicit
	Implicit and Explicit Arguments
	Member Function�Defined Inside The class
	Member Function�Defined Outside The class
	Typical Program Organization

