
CONSTRUCTORS
AND INITIALIZER LISTS

Constructors are member functions that construct objects

Delroy A. Brinkerhoff

Presenter Notes
Presentation Notes
Constructors are special functions that construct or build objects. Initializer lists are a shorthand notation, usable only with constructors, for initializing member variables.



CONSTRUCTORS AND
THEIR CHARACTERISTICS

• Constructors are member functions that build or construct objects

• They are called automatically when a new object must be constructed

• foo f1(123);

• foo* f2 = new foo(123);

• Two distinguishing characteristics

• The function name is the same as the class name

• They do not have a return type (not even void)

Presenter Notes
Presentation Notes
Constructors are, first and foremost, member functions. That means that they have all the characteristics and features of other member functions, specifically, the ability to access all the class’s member data and functions. But constructors are also special functions, which means that they have some characteristics beyond other member functions.The first thing that is special about constructors is that they are called whenever we create a new object. That means that whenever we define an automatic variable of class type or whenever we use the new operator to create a dynamic object, a constructor is called. In the two examples, we assume that foo is the name of a class.There are two physical characteristics that are unique to constructors: First, the name of the function is the same as the name of the class. And second, constructors do not have a return type, not even void.



FIVE KINDS OF CONSTRUCTORS

Constructor Example

Default class-name()

Conversion class-name(type t)

Copy class-name(class& o)

Move class-name(class&& o)

General class-name(..., ..., ...);

Presenter Notes
Presentation Notes
There are five kinds of constructors that are given names to make it easier to talk about them.default constructors are those that do not have any arguments.conversion constructors have exactly one argument, which may be any valid data type. Conversion constructors convert the function argument into an instance of the class that defines the constructor.copy constructors make a new object by copying an existing object. These constructors always take one argument that is passed by reference. It is the pass by reference that distinguishes the copy constructor from the othersmove constructors are similar to copy constructors but are different in two important ways: First, the argument is an rvalue reference declarator, which is denoted by two ampersands. Second, unlike copy constructors that duplicate the argument, move constructors can take the argument objects’ resources, leaving the argument empty.general constructors are those constructors that don’t fall under any of the above categories. They may be algorithmically simple, just initializing the member variables, or they may be arbitrarily complex. General constructors may have any number of arguments, represented by the ellipses in the example, and are a catch-all for any constructor that does not fall into one of the above categories.



INITIALIZER LIST NOTATION

• Initializer lists are only allowed with constructors

• Introduced by a colon

• Come between the argument list and the function body

• Are used to initialize member variables, often with function arguments

• Are function calls (but some behave like simple assignment)

Presenter Notes
Presentation Notes
Initializer lists are a notational convenience that is only allowed with constructors. The list, if used, is introduced by a colon, and is placed between the argument list and the function body. Initializer lists are so called because they are used to initialize member variables, either with constant values or more typically with the constructor function’s arguments. They are implemented as function calls but behave like simple assignment statements.



EXAMPLE INITIALIZER LIST NOTATION

class fraction

{

private:

int numerator;

int denominator;

public:

fraction(int n, int d)

: numerator(n), denominator(d) {}

};

Presenter Notes
Presentation Notes
The example illustrates an initializer list with a general constructor. The fraction class has two member variables: numerator and denominator. Both variables are initialized with a constructor that uses an initializer list. The comma-separated list begins with a colon and has one element for each member variable. This specific constructor has no task beyond initializing the member variables, but, as a function, it must still have a body, which is formed by an empty set of braces at the end.The elements of the initializer list are not arbitrary, they conform to a very specific pattern: Each element is formed by the name of a member variable and, in parentheses, the name of an argument. In a later chapter, we’ll discover that member variables can themselves be objects. In this case, there may be more than a single value inside the parentheses.



WORKS

fraction::fraction(int n, int d)

{

numerator = n;

denominator = d;

}

fraction::fraction(int n, int d) 

: numerator(n), denominator(d) {}

PREFERRED

INITIALIZING MEMBER VARIABLES

Presenter Notes
Presentation Notes
An element in an initializer list behaves just like an assignment statement. Both illustrated constructors work correctly, but the second example is the preferred way of initializing member variables. It is preferred because the operations carried out by the initializer list finish before any statement in the body of the constructor runs. This means that the member variables are fully initialized before there is any chance for them to be used in the function body.



HEADER FILE

class fraction
{

private:
int numerator;
int denominator;

public:
fraction(int n, int d);

};

fraction::fraction(int n, int d)
: numerator(n), denominator(d)

{
.
.
.

}

SOURCE CODE FILE

INITIALIZER LIST:
TWO-FILE ORGANIZATION

Presenter Notes
Presentation Notes
There is no requirement that the body of a constructor, either with or without an initializer list, be short or simple. If the body of the constructor is long, then it might be appropriate to only prototype the constructor in the class specification, placed in a header or .h file, and define the body of the function in a source code or .cpp file. When this done, the initializer list goes with the body, that is, with the function definition and not with the prototype.



UML

• +fraction(n: int = 0, d : int = 1) • fraction(int n = 0, int d = 1);

• fraction(int n = 0, int d = 1)

: numerator(n), denominator(d) {}

C++

DEFAULT ARGUMENTS
AND INITIALIZER LISTS

Presenter Notes
Presentation Notes
The UML provides a notation for specifying default values for function arguments. The UML notation translates into C++ in a straightforward way, where it may be used with or without initializer lists. In this example, the user may create a fraction by supplying both a numerator and a denominator, which would represent a general constructor call. If the default value of 1 is accepted for d, then the constructor uses the provided value for the numerator and 1 for the denominator, which effectively converts an integer into a fraction. Finally, if the default values are accepted for both arguments, then the constructor builds a fraction of 0/1, which is an appropriate empty fraction.



HEADER FILE

class fraction
{

private:
int numerator;
int denominator;

public:
fraction(int n = 0, int d = 1);

};

fraction::fraction(int n, int d)
: numerator(n), denominator(d)

{
.
.
.

}

SOURCE CODE FILE

DEFAULT ARGUMENTS:
TWO-FILE ORGANIZATION

Presenter Notes
Presentation Notes
Notice, that if a constructor has both an initializer list and one or more default arguments, and if the constructor is prototyped in a header file but defined in a source code file, then the initializer list goes with the definition in the source code file, while the default arguments go with the prototype in the header file.



LIMITS OF DIRECT INITIALIZATION

• In-class initialization does not always 
eliminate the need for a default 
constructor or default arguments

• Without a default constructor, the 
presence of parameterized constructors 
prevents creating empty fractions

fraction f1;
fraction* f2 = new fraction;

class fraction
{

private:
int numerator = 0;
int denominator = 1;

public:
fraction() {}
fraction(int n);
fraction(int n, int d);

};

Presenter Notes
Presentation Notes
Initializing member variables directly in the class specification does not always eliminate the need for either a default constructor or default arguments. If a class only defines a default constructor, then direct initialization can replace that constructor. But, if a class defines any additional constructors, then a default constructor or default arguments remain the only way of creating an object without explicitly passing in one or more values to the constructor.


	Constructors�and Initializer Lists
	Constructors and�Their Characteristics
	Five Kinds of Constructors
	Initializer List Notation
	Example Initializer List Notation
	Initializing Member Variables
	Initializer List:�Two-File Organization
	Default Arguments�And Initializer Lists
	Default Arguments:�Two-File Organization
	Limits of Direct Initialization

