
THE “this” POINTER

Binding objects to member functions

Delroy A. Brinkerhoff

Presenter Notes
Presentation Notes
It’s a bit awkward to say the “this” pointer, but it is nevertheless an important player in the process of calling functions that are members of a class.



STRUCT VERSION

const int SIZE = 100;

struct stack
{

char st[SIZE];
int sp;

};

stack make_stack();
void init_stack(stack* s);
void push(stack* s, char data);
char pop(stack* s);
int size(stack* s);
char peek(stack* s);

class stack
{

private:
static const int SIZE = 100;

char st[SIZE];
int sp;

public:
stack() : sp(0) {}
void push(char data);
char pop();
int size();
char peek();

};

CLASS VERSION

STACK EXAMPLE

Presenter Notes
Presentation Notes
To better understand the role that the “this” pointer plays, we look at two versions of the stack class. The version on the left implements a stack as a structure. It’s possible for a client program to create multiple instances of a stack, so the stack functions must be bound to a specific stack when they run. That is, each function must “know” on which stack it is operating. We create the object-to-function binding by passing the address of the stack as an argument to most of the stack functions.The class version of stack is quite similar to the structure version, but the size and all of the functions are made members of the class. The class constructor function replaces the make_stack and the init_stack functions appearing in the structure version. But the most important difference is that the stack pointer argument is removed from the member functions. Eliminating the stack pointer argument does not mean that the functions no longer need to be bound to a specific stack object, but rather that the binding takes place automatically.



PROGRAMMER WRITES

• s.push('a');

• void push(stack* s, char data)
{

if (s->sp < SIZE)
s->st[s->sp++] = data;

else
cerr << "Overflow" << endl;

}

• s.push(&s, 'a');

• void stack::push(stack* this, char data)
{

if (this->sp < SIZE)
this->st[this->sp++] = data;

else
cerr << "Overflow" << endl;

}

COMPILER GENERATES

FUNCTION CALLS AND DEFINITIONS

Presenter Notes
Presentation Notes
The code appearing on the left side of the slide is the code that a programmer writes. The code appearing on the right side of the slide represents the code that the compiler automatically generates. (Older C++ compilers generated C code that looked similar to the illustrated code. Newer compilers generate machine code directly, but the machine code does pass the address of the calling object.) The address of the calling object is passed to an implicit pointer argument named “this.” The programmer writes neither the argument in the call nor the parameter in the header. The programmer can optionally write the “this arrow” in the body of the function but doing so is not required.



THE “this” POINTER

• The "this" pointer is an automatic local variable

• The compiler creates "this" in every non-static member function

• "this" stores the address of the object that calls the member function

• "this" implements the object-to-function binding

Presenter Notes
Presentation Notes
The “this” pointer is an argument, which is an automatic local variable. The compiler creates the “this” argument in every non-static member function. Whenever a member function is called, the address of the calling object is passed into the “this” argument, which implements the object-to-function binding.



VISUALIZING THE this POINTER

this

push(this, ‘a’)

address implicitly passed

s
sp

st

&s

t

r

s

sp

st

sp

st

sp

st

stack r;
stack s;
stack t;
s.push('a');
t.push('a');

this

push(this, ‘a’)

address implicitly passed

t
sp

st

&t

Presenter Notes
Presentation Notes
It’s sometimes easier to understand how this all happens if we can visualize the process. The client program may create multiple stacks. A member function is always called through or bound to an object. The compiler generates code to pass the address of the calling object to the function where it is stored in the implicit argument named “this.” The “this” pointer always points to the calling object, binding the function to the object.


	THE “this” POINTER
	Stack Example
	Function Calls and Definitions
	THE “this” POINTER
	Visualizing the this pointer

